Skip to main content

Advertisement

Log in

Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organic and elemental carbon were measured both in daily PM10 and PM2.5 and in 6 h range time PM2.5 samples collected from September 2015 to October 2015 in a coastal rural site near Brindisi in the Apulia region (Italy), in order to determine factors affecting the carbonaceous aerosol variations. Carbon content (total carbon TC) represented a considerable fraction for both PM10 and PM2.5. In particular, in PM10 samples, organic carbon (OC) varied from 1.06 to 18.32 μg m−3 with a mean concentration of 5 ± 4 μg m−3 and EC varied from 0.11 to 0.88 μg m−3 with a mean value of 0.41 ± 0.19 μg m−3. In PM2.5 samples, OC varied from 0.54 to 12.91 μg m−3 with a mean concentration of 3.5 ± 2.8 μg m−3 and EC varied from 0.11 to 0.85 μg m−3 with a mean value of 0.35 ± 0.18 μg m−3. The highest values for both parameters were recorded when the air masses were coming from NE Europe and when Saharan Dust events were recognized. The results show that OC and EC exhibited higher concentrations during the night hours, suggesting that stable atmosphere and lower mixing conditions play important roles for the accumulation of air pollutants and promote condensation or adsorption of semivolatile organic compounds. In samples from a Saharan Dust event and in samples with the lowest and the highest OCsec, ATR-FTIR analysis allowed us to identify organic functional groups including the non-acid organic hydroxyl C–OH group (e.g., sugars, anhydrosugars, and polyols), carbonyl C=O group, carboxylic acid COOH group, aromatic and aliphatic unsaturated C=C–H group, aliphatic saturated C–C–H group, and amine NH2 group. Some inorganic ions were also identified: carbonates, sulfate, silicate, and ammonium. The dusty samples are mainly characterized by the presence of carbonate and hydrogen sulfate ions and by kaolinite (absorption at 914 and 1010 cm−1), while in samples with air masses coming from the NE, OC is mainly characterized by aliphatic and aromatic C–H and O–H and N–H groups (absorptions in the range 3500–2700 cm−1) and by the presence of organonitrate, aromatic amide and amine, and carboxylic acids (absorptions at 1630 and 1770–1700 cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aiken AC, De Carlo PF, Kroll JH, Worsnop DR, Huffman JA, Docherty KS, Ulbrich IM, Mohr C, Kimmel JR, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann PJ, Canagaratna MR, Onasch TB, Alfarra MR, Prevot ASH, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez JL (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485

    Article  CAS  Google Scholar 

  • Allen DT, Palen EJ, Haimov MI, Hering SV, Young JR (1994) Fourier transform infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration. Aerosol Sci Technol 21(4):25–342

    Article  Google Scholar 

  • Anıl I, Golcuk K, Karaca F (2014) ATR-FTIR spectroscopic study of functional groups in aerosols: the contribution of a Saharan dust transport to urban atmosphere in Istanbul, Turkey. Water Air Soil Pollut 225:1898

    Article  CAS  Google Scholar 

  • Bauer H, Kasper-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64:109–119

    Article  CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  CAS  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1991) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781

    Article  Google Scholar 

  • Contini D, Cesari D, Donateo A, Chirizzi D, Belosi F (2014) Characterization Of PM10 And PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 5(2):435–45

  • Cucciniello R, Proto A, Rossi F, Motta O (2013) Mayenite based supports for atmospheric NOx sampling. Atmos Environ 79:666–671

    Article  CAS  Google Scholar 

  • Cucciniello R, Proto A, Rossi F, Marchettini N, Motta O (2015) An improved method for BTEX extraction from charcoal. Anal Methods 7:4811–4815

    Article  CAS  Google Scholar 

  • Di Gilio A, de Gennaro G, Dambruoso P, Ventrella G (2015) An integrated approach using high time-resolved tools to study the origin of aerosols. Sci Tot Environ 530–531:28–37

    Article  CAS  Google Scholar 

  • Ferrero L, Perrone MG, Petraccone S, Sangiorgi G, Ferrini BS, Lo Porto C, Lazzati Z, Cocchi D, Bruno F, Greco F, Riccio A, Bolzacchini E (2010) Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area (Article). Atmos Chem Phys 10(8):3915–3932

    Article  CAS  Google Scholar 

  • Formenti P, Rajot JL, Desboeufs K, Caquineau S, Chevaillier S, Nava S, Gaudichet A, Journet E, Triquet S, Alfaro S, Chiari M, Haywood J, Coe H, Highwood E (2008) Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J Geophys Res 113:D00C13. https://doi.org/10.1029/2008JD009903

    Article  CAS  Google Scholar 

  • Genga A, Ielpo P, Siciliano T, Siciliano M (2017) Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmos Res 183:245–254

    Article  CAS  Google Scholar 

  • Gilardoni S, Liu S, Takahama SM, Russell L, Allan JD, Steinbrecher R, Jimenez JL, De Carlo PF, Dunlea EJ, Baumgardner D (2009) Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmos Chem Phys 9:5417–5432

    Article  CAS  Google Scholar 

  • Grivas G, Chaloulakou A, Samara C, Spyrellis N (2004) Spatial and temporal variation of PM10 mass concentrations within the greater area of Athens, Greece. Water Air Soil Pollut 158:357–371

    Article  CAS  Google Scholar 

  • Hamilton JF, Webb PJ, Lewis AC, Hopkins JR, Smith S, Davy P (2004) Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmos Chem Phys 4:1279–1290

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J (2008) Sources and processes affecting carbonaceous aerosol in Central England. Atmos Environ 42(7):413–1423

    Article  CAS  Google Scholar 

  • Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1994) Seasonal trends in Los Angeles ambient organic aerosol observed by high-resolution gas chromatography. Aerosol Sci Technol 20:303–317

    Article  CAS  Google Scholar 

  • http://aeronet.gsfc.nasa.gov/

  • http://www.bsc.es/ess/bsc-dust-daily-forecast

  • Janssen NA, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ Health Perspect 119(12):1691–1699

    Article  CAS  Google Scholar 

  • Kawamura K, Ikushima K (1993) Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ Sci Technol 27:2227–2235

    Article  CAS  Google Scholar 

  • Kawamura K, Yasui O (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos Environ 39:1945–1960

    Article  CAS  Google Scholar 

  • Kelley AM (2012) Condensed-phase molecular spectroscopy and photophysics. John Wiley & Sons

  • Khan MB, Masiol M, Formenton G, Di Gilio A, de Gennaro G, Agostinelli C, Pavoni B (2016) Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Sci Tot Environ 542:172–181

    Article  CAS  Google Scholar 

  • Lim H, Turpin B (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496

    Article  Google Scholar 

  • Lonati G, Ozgen S, Giugliano M (2007) Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos Environ 41:4599–4610

    Article  CAS  Google Scholar 

  • Mallone S, Strafoggia M, Faustini A, Gobbi GP, Marconi A, Forastiere F (2011) Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environ Health Perspect 119:1409–1414

    Article  CAS  Google Scholar 

  • Maria SF, Russell LM, Turpin BJ, Porcja RJ (2002) FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmos Environ 36(33):5185–5196

    Article  CAS  Google Scholar 

  • Mauderly JL, Barrett EG, Gigliotti AP, McDonald JD, Reed MD, Seagrave J, Mitchell LA, Seilkop SK (2011) Health effects of subchronic inhalation exposure to simulated downwind coal combustion emissions. Inhal Toxicol 23(6):349–362

    Article  CAS  Google Scholar 

  • Na K, Aniket A, Sawant CS, Cocker DR III (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355

    Article  CAS  Google Scholar 

  • NIOSH: Method 5040 Cassinelli ME, O’Connor PF (Eds.) (1998), NIOSH: Manual of Analytical Methods (NMAM) (fourth ed.) [Suppl. 2, Supplement to DHHS (NIOSH) Publication No. 94-113]

  • Pateraki ST, Assimakopoulos VD, Maggos TH, Fameli KM, Kotroni V, Vasilakos CH (2013) Particulate matter pollution over a Mediterranean urban area. Sci Tot Environ 463:508–524

    Article  CAS  Google Scholar 

  • Pecorari E, Squizzato S, Masiol M, Radice P, Pavoni B, Rampazzo G (2013) Using a photochemical model to assess the horizontal, vertical and time distribution of PM2.5 in a complex area: relationships between the regional and local sources and the meteorological conditions. Sci Tot Environ 443:681–691

    Article  CAS  Google Scholar 

  • Perrone MR, Piazzalunga A, Prato M, Carofalo I (2011) Composition of fine and coarse particles in a coastal site of the Central Mediterranean: carbonaceous species contributions. Atmos Environ 45:7470–7477

    Article  CAS  Google Scholar 

  • Perrone MR, Genga A, Siciliano M, Siciliano T, Paladini F, Burlizzi P (2016) Saharan dust impact on the chemical composition of PM10 and PM1 samples over South-eastern Italy. Arab J Geosci 9:1–11

    Article  CAS  Google Scholar 

  • Pindado O, Perez R, Garcia S, Sanchez M, Galan P, Fernandez M (2009) Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain. Atmos Environ 43:2796–2803

    Article  CAS  Google Scholar 

  • Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Oliveira C, Sanches de la Campa A, Artinano B, Matos M (2011) OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45:6121–6132

    Article  CAS  Google Scholar 

  • Putaud JP, Raes F, Van Dingenen R, Brüggemann E, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, ten Brink H, Tørseth K, Wiedensohler A (2004) A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595

    Article  CAS  Google Scholar 

  • Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC (2010) European aerosol pheneomenology–3: physical and chemical characteristics of particulate matter from 60 rural, urban and kerbside sites across Europe. Atmos Environ 44:1308–1320

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, Brink HM, Lutz M, Bruckmann P, Straehl P, Schneider J (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Moreno T, Viana MM, Castillo S, Pey J, Rodríguez S, Artiñano B, Salvador P, Sánchez M, Garcia Dos Santos S, Herce Garraleta MD, Fernandez-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Sanz MJ, Palomo-Marín R, Pinilla-Gil E, Cuevas E, de la Rosa J, Sánchez de la Campa A (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Viana M, Moreno T, Reche C, Minguillon MC, Ripoll A, Pandolfi M, Amato F, Karanasiou A, Perez N, Pey J, Cusack M, Vazquez R, Plana F, Dall’Osto M, de la Rosa J, Sanchez de la Campa A, Fernandez-Camacho R, Rodrıguez S, Pio C, Alados-Arboledas L, Titos G, Artınano B, Salvador P, Garcıa Dos Santos S, Fernandez Patier R (2013) Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmos Chem Phys 13:6185–6206

    Article  CAS  Google Scholar 

  • Ravisankar R, Kiruba S, Eswaran P, Senthilkumar G, Chandrasekaran A (2010) Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique. E-J Chem 7(s1):S185–S190. https://doi.org/10.1155/2010/643218

    Article  CAS  Google Scholar 

  • Robinson A, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    Article  CAS  Google Scholar 

  • Rodriguez S, Querol X, Alastuey A, Mantilla E (2002) Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos Environ 36:3101–3112

    Article  CAS  Google Scholar 

  • Samara C, Voutsa D, Kouras A, Eleftheriadis K, Maggos T, Saraga D, Petrakakis M (2014) Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece. Environ Sci Pollut Res 21:1769–1785

    Article  CAS  Google Scholar 

  • Sandrini S, Fuzzi S, Piazzalunga A, Prati P, Bonasoni P, Cavalli F, Bove MC, Calvello M, Cappelletti D, Colombi C, Contini D, de Gennaro G, Di Gilio A, Fermo P, Ferrero L, Gianelle V, Giugliano M, Ielpo P, Lonati G, Marinoni A, Massabò D, Molteni U, Moroni B, Pavese G, Perrino C, Perrone MG, Perrone MR, Putaud JP, Sargolini T, Vecchi R, Gilardoni S (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos Environ 99:587–598

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, p 1326

  • Shaka’ H, Saliba NA (2004) Concentration measurements and chemical composition of PM10–2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos Environ 38(4):523–531. https://doi.org/10.1016/j.atmosenv.2003.10.009

    Article  CAS  Google Scholar 

  • Smekens A, Moreton Godoi RH, Berghmans P, Van Grieken R (2005) Characterisation of soot emitted by domestic heating, aircraft and cars using diesel or biodiesel (Article). J Atmos Chem 52(1):45–62

    Article  CAS  Google Scholar 

  • Takahama S, Ruggeri S, Dillner AM (2016) Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands. Atmos Meas Tech 9:3429–3454

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Tot Environ 400:270–282

    Article  CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1994) Investigation of organic aerosol sampling artifacts in the Los Angeles basin. Atmos Environ 28(19):3061–3071

    Article  CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    Article  CAS  Google Scholar 

  • Wagner JG, Kamal AS, Morishita M, Dvonch JT, Harkema JR, Rohr AC (2014) PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol 11:25

    Article  CAS  Google Scholar 

  • www.arpa.puglia.it/web/guest/progtarantosalento

  • Zhang X, Smith KA, Worsnop DR, Jimenez JL, Jayne JT, Kolb CE, Morris JW, Davidovits P (2004) Numerical characterization of particle beam collimation: part II integrated aerodynamic-lens-nozzle system. Aerosol Sci Technol 36:619–638

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Project PON 254/Ric. Potenziamento del “CENTRO RICERCHE PER LA SALUTE DELL’UOMO E DELL’AMBIENTE” Cod. PONa3_00334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Genga.

Additional information

Responsible editor: Gerhard Lammel

Highlights

• Organic carbon and elemental carbon exhibited higher concentrations during the night hours.

• The highest values of OC and EC, OCsec, and OCprim were measured when the air masses were coming from Northeastern Europe.

• In dusty days, OCsec and OCprim values are slightly higher than in dust-free days.

• When the air masses come from Northeastern Europe, OC is mainly characterized by aliphatic and aromatic C–H and O–H and N–H groups.

• Organonitrate, aromatic amide and amine, and carboxylic acids are mainly present in samples of air masses coming from Northeastern Europe.

• Kaolinite and carbonate are mainly present in coarse dusty samples.

Electronic supplementary material

ESM 1

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siciliano, T., Siciliano, M., Malitesta, C. et al. Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environ Sci Pollut Res 25, 23929–23945 (2018). https://doi.org/10.1007/s11356-018-2237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2237-2

Keywords

Navigation