Skip to main content
Log in

Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

It is known that pesticides such as abamectin (ABA) present cytotoxic effects on target organisms; however, the effects from ABA on non-target organisms such as amphibians are poorly understood. The aim of the current study is to investigate whether the exposure of Lithobates catesbeianus tadpoles to different abamectin concentrations [12.5, 25, and 50% of the median lethal concentration (LC50)] leads to behavioral and morphological changes and/or generates possible cytotoxic effects. The aggregation test showed that tadpoles exposed to the highest ABA concentrations did not respond to the stimulus from non-familial and unrelated co-specific species. On the other hand, there was no difference in the total number of crossings in the central line of the herein adopted apparatus between groups; it suggests that ABA did not affect animal locomotion in the aforementioned test, although changes in the normal swimming pattern of tadpoles exposed to the pesticide were recorded in the swimming activity test. In addition, the herein exposed animals did not respond to the predatory stimulus in the antipredator response test; this result suggests defensive response deficit caused by the pesticide. With respect to their oral morphology, tadpoles exposed to ABA presented the lowest scores for mandibular pigmentation and structures, as well as for dentition condition. Finally, it was possible seeing that the exposure to ABA, even at the lowest concentration (12.5% of the LC50), resulted in nuclear changes in the erythrocytes of the animals; these changes became evident in the increased number of micronuclei and in other nuclear abnormalities. Thus, besides confirming the cytotoxic potential of ABA in amphibians, the current study corroborates the hypothesis that the exposure to the herein investigated pesticide leads to behavioral and morphological changes in tadpoles, fact that may negatively reflect on the survival, as well as on natural populations of these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altenburger R, Bödeker W, Faust M, Grimme LH (1990) Evaluation of the isobologram method for the assessment of mixtures of chemicals: combination effect studies with pesticides in algal biotests. Ecotoxicol Environ Saf 20:98–114

    Article  CAS  Google Scholar 

  • Altig R (1970) A key to the tadpoles of the continental United States and Canada. Herpetologica 26:180–207

    Google Scholar 

  • Ashauer R, Boxall AB, Brown CD (2007) New ecotoxicological model to simulate survival of aquatic invertebrates after exposure to fluctuating and sequential pulses of pesticides. Environ Sci Technol 41:1480–1486

    Article  CAS  Google Scholar 

  • Babbitt KJ, Tanner GW (1998) Effects of cover and predator size on survival and development of Rana utricularia tadpoles. Oecologia 114:258–262

    Article  Google Scholar 

  • Babbitt KJ, Baber MJ, Tarr TL (2008) Patterns of larval amphibian distribution along a wetland hydroperiod gradient. Can J Zool 81:1539–1552

    Article  Google Scholar 

  • Babini MS, Salas NE, de Lourdes Bionda C, Martino AL (2015) Implicaciones de la urbanización en la presencia, distribución y ecología reproductiva de la fauna de anuros de una ciudad del área central de Argentina. Rev Mex Biodivers 86:188–195

    Article  Google Scholar 

  • Bai SH, Ogbourne S (2016) Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere 154:204–214

    Article  CAS  Google Scholar 

  • Bateman PW, Fleming PA (2015) Body size and group size of Cuban tree frog (Osteopilus septentrionalis) tadpoles influence their escape behavior. Acta Ethol 18:161–166

    Article  Google Scholar 

  • Blaustein AR, O’Hara RK (1987) Aggregation behavior in Rana cascadae tadpoles: association preferences among wild aggregation and response to non-kin. Anim Behav 35:1549–1555

    Article  Google Scholar 

  • Blaustein AR, Waldman B (1992) Kin recognition in anuran amphibians. Anim Behav 44:207–221

    Article  Google Scholar 

  • Bosch B, Gorla N, Aiassa D (2011) Micronucleus test in post metamorphic Odontophrynus cordobae and Rhinella arenarum (Amphibia: Anura) for environmental monitoring. J Toxicol Environ Health Sci 3:155–163

    CAS  Google Scholar 

  • Braun A, Maurette M-T, Oliveros E (1986) Technologie Photochimique. Presses Polytechniques Romandes, Lausanne

    Google Scholar 

  • Bresler J, Bragg AN (1954) Variations in the rows of labial teeth in tadpoles. Copeia 1954:255–257

    Article  Google Scholar 

  • Brodeur JC, Sanchez M, Castro L, Rojas DE, Cristos D, Damonte MJ, Andriulo AE (2017) Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina. Chemosphere 185:36–46

    Article  CAS  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Tunac JB (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367

    Article  CAS  Google Scholar 

  • Campbell WC (1989) Ivermectin and Abamectin. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-3626-9

  • Casillas-Barrag’an I, Costa-Pereira R, Peixoto PEC (2016) Perceived predation risk decreases movement and increases aggregation of Amazon milk frog (Anura, Hylidae) tadpoles throughout ontogeny. Hydrobiologia 765:1–8

    Article  Google Scholar 

  • Chai L, Wang H, Zhao H, Dong S (2017) Chronic effects of fluoride exposure on growth, metamorphosis, and skeleton development in Bufo gargarizans larvae. Bull Environ Contam Toxicol 98:496–501

    Article  CAS  Google Scholar 

  • Cornell TJ, Berven KA, Gamboa GJ (1989) Kin recognition by tadpoles and froglets of the wood frog Rana sylvatica. Oecologia 78:312–316. https://doi.org/10.1007/BF00379103

    Article  Google Scholar 

  • Cribb AY, Afonso AM, Mostério CMF (2013) Manual técnico de ranicultura. Embrapa, Brasília, p 73

    Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    Article  CAS  Google Scholar 

  • David M, Marigoudar SR, Patil VK, Halappa R (2012) Behavioral morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pestic Biochem Physiol 103:127–134

    Article  CAS  Google Scholar 

  • Drake DL, Altig R, Grace JB, Walls SC (2007) Occurrence of oral deformities in larval anurans. Copeia 2007(2):449–458

    Article  Google Scholar 

  • Ehrsam M, Knutie SA, Roh JR (2016) The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues. Environ Toxicol Chem 35:2239–2244

    Article  CAS  Google Scholar 

  • Fernandez JMC, Oliveira MZT (2017) Predation and schooling influence on the primary response of individuals of Rhinella ornata (Spix, 1824) (Anura: Bunonidae): an experimental assessment of habitat selection. S Am J Herpetol 12:57–60

    Article  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species-the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Fishwild TG, Schemidt RA, Jankens KM, Berven KA, Gamboa GL, Richards CM (1990) Sibling recognition by larval frogs (Rana pipuens, Rana sylvatica and Pseudacris crucifer). J Herpetol 24:40–44

    Article  Google Scholar 

  • Freitas JS, Almeida EA (2016) Antioxidant defense system of tadpoles (Eupemphix nattereri) exposed to changes in temperature and pH. Zool Sci 33:186–194

    Article  CAS  Google Scholar 

  • Gamboa GJ, Foster RL, Scope JA, Bitterman AM (1991) Effects of stage of colony cycle, context, and intercolony distance on conspecific tolerance by paper wasps (Polistes fuscatus). Behav Ecol Sociobiol 29:87–94

    Article  Google Scholar 

  • Gómez-Meda BC, Zúñiga-González GM, Zamora-Perez A, Luisa Ramos-Ibarra M, Batista-González CM, Torres-Mendoza BM (2004) Folate supplementation of cyclophosphamide-treated mothers diminishes micronucleated erythrocytes in peripheral blood of newborn rats. Environ Mol Mutagen 44:174–178

    Article  Google Scholar 

  • Griffiths RA, Denton J (1992) Interspecific associations in tadpoles. Anim Behav 44:1153–1157

    Article  Google Scholar 

  • Hopkins WA (2000) Reptile toxicology: challenges and opportunities on the last frontier in vertebrate ecotoxicology. Environ Toxicol Chem 19:2391–2393

    Article  CAS  Google Scholar 

  • IUCN SSC Amphibian Specialist Group (2015) Lithobates catesbeianus. The IUCN Red List of Threatened Species 2015: e.T58565A53969770. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T58565A53969770.en

  • Knauer K, Homazava N, Junghans M, Werner I (2017) The influence of particles on bioavailability and toxicity of pesticides in surface water. Integr Environ Assess Manag 13:585–600

    Article  CAS  Google Scholar 

  • Kovecses J, Marcogliese DJ (2005) Avermectins: potential environmental risks and impacts on freshwater ecosystems in Quebec. Sci Techn report ST-233E. Environ Canada – Quebec Region, Environ Conservat, St. Lawrence Centre

  • Lajmanovich RC, Junges CM, Attademo AM, Peltzer PM, Cabagna-Zenklusen MC, Basso A (2013) Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella Arenarum tadpoles. Water Air Soil Pollut 224:1404

    Article  Google Scholar 

  • Lajmanovich RC, Cabagna-Zenklusen MC, Attademo AM, Junges CM, Peltzer PM, Bassó A, Lorenzatti E (2014) Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutat Res Genet Toxicol Environ Mutagen 769:7–12. https://doi.org/10.1016/j.mrgentox.2014.04.009

    Article  CAS  Google Scholar 

  • Langerhans RB (2009) Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. J Evol Biol 22:1057–1075

    Article  CAS  Google Scholar 

  • Lowe SJ, Browne M, Boudjelas S, De-Poorter M (2004) 100 of the World's worst invasive alien species: a selection from the global invasive species database. IUCN, SSC and ISSG, Auckland

    Google Scholar 

  • Lumaret JP, Errouissi F, Floate K, Römbke J, Wardhaugh K (2012a) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 13:1004–1060

    Article  CAS  Google Scholar 

  • Lumaret JP, Errouissi F, Floate K, Rombke J, Wardhaugh K (2012b) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 13:1004–1060

    Article  CAS  Google Scholar 

  • Mathew DV, Wassersug RJ, Parris MJ (2010) How does a change in labial tooth row number affect feeding kinematics and foraging performance of a Ranid tadpole (Lithobates Sphenocephalus)? Biol Bull 218:160–168

    Article  Google Scholar 

  • Mesa LM, Lindt I, Negro L, Gutierrez MF, Mayora G, Montalto L, Lifschitz A (2017) Aquatic toxicity of ivermectin in cattle dung assessed using microcosms. Ecotoxicol Environ Saf 144:422–429

    Article  CAS  Google Scholar 

  • Mingo V, Lötters S, Wagner N (2017) The impact of land use intensity and associated pesticide applications on fitness and enzymatic activity in reptiles - a field study. Sci Total Environ 590:114–124

    Article  Google Scholar 

  • Montalvão MF, Malafaia G (2017) Effects of abamectin on bullfrog tadpoles: insights on cytotoxicity. Environ Sci Pollut Res Int 24:23411–23416

    Article  Google Scholar 

  • Montalvão MF, de Souza JM, Guimarães ATB, de Menezes IPP, da Silva Castro AL, de Lima Rodrigues AS, Malafaia G (2017) The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Lithobates Catesbeianus). Chemosphere 183:491–502

    Article  Google Scholar 

  • Moreira RA, Daam MA, Vieira BH, Sanches LM, Reghini MV, da Silva Mansano A, Rocha O (2017) Toxicity of abamectin and difenoconazole mixtures to a Neotropical cladoceran after simulated run-off and spray drift exposure. Aquat Toxicol 185:58–66

    Article  CAS  Google Scholar 

  • Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Jernstedt H (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599:387–399

    Article  Google Scholar 

  • Novelli A (2010) Efeito do Vertimec 18CE e de seu princípio ativo, a abamectina, em ambiente aquatico: uma análise laboratorial e in situ. Doctoral thesis Escola de Engenharia de São Carlos Universidade de São Paulo.

  • Novelli A, Vieira BH, Cordeiro D, Cappelini LTD, Vieira EM, Espíndola ELG (2012) Lethal effects of abamectin on the aquatic organisms Daphnia Similis, Chironomus Xanthus and Danio Rerio. Chemosphere 86:36–40

    Article  CAS  Google Scholar 

  • Novelli A, Vieira BH, Braun AS, Mendes LB, Daam MA, Espíndola ELG (2016) Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebra fish juveniles. Chemosphere 144:1408–1414

    Article  CAS  Google Scholar 

  • Nowell LH, Norman JE, Ingersoll CG Moran PW (2016) Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides. Sci Total Environ 550:835–850

    Article  CAS  Google Scholar 

  • Ossana NA, Castaña PM, Salibián A (2013) Use of Lithobates Catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista river (Argentina). Arch Environ Contam Toxicol 65:486–497

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML (2015) Toxic and genotoxic effects of the imazethapyr-based herbicide formulation pivot H® on montevideo tree frog Hypsiboas Pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 119:15–24

    Article  Google Scholar 

  • Pérez-Iglesias JM, de Arcaute CR, Natale GS, Soloneski S, Larramendy ML (2017) Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III-and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas Pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 142:503–508

    Article  Google Scholar 

  • Polo-Cavia N, Burraco P, Gomez-Mestre I (2016) Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition. Aquat Toxicol 172:30–35

    Article  CAS  Google Scholar 

  • Pruitt JN, Husak JF (2010) Context-dependent running speed in funnel-web spiders from divergent populations. Funct Ecol 24:165–171

    Article  Google Scholar 

  • Raftery TD, Volz DC (2015a) Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos. Neurotoxicol Teratol 49:10–18

    Article  CAS  Google Scholar 

  • Raftery TD, Volz DC (2015b) Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos. Neurotoxicol Teratol 49:10–18

    Article  CAS  Google Scholar 

  • Rehman MU, Tahir M, Ali F, Qamar W, Lateef A, Khan R, Quaiyoom A, Oday-O-Hamiza SS (2012) Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol Cell Biochem 365(1–2):119–127. https://doi.org/10.1007/s11010-012-1250-x

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The lethal impacts of roundup and predatory stress on six species of north American tadpoles. Arch Environ Contam Toxicol 48:351–357

    Article  CAS  Google Scholar 

  • Rissoli RZ, Abdalla FC, Costa MJ, Rantin FT, McKenzie DJ, Kalinin AL (2016) Effects of glyphosate and the glyphosate based herbicides roundup original® and roundup Transorb® on respiratory morphophysiology of bullfrog tadpoles. Chemosphere 156:37–44

    Article  CAS  Google Scholar 

  • Rohr JR, Crumrine PW (2005) Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15:1135–1147

    Article  Google Scholar 

  • Rohr JR, Brown J, Battaglin WA, McMahon TA, Relyea RA (2017) A pesticide paradox: fungicides indirectly increase fungal infections. Ecol Appl 27:2290–2302

    Article  Google Scholar 

  • Rowe CL, Kinney OM, Congdon JD (1998) Oral deformities in tadpoles of the bullfrog (Rana catesbeina) caused by conditions in a polluted habitat. Copeia 1998:244–246

    Article  Google Scholar 

  • Rumschlag S, Rohr JR (2017) The influence of pesticide use on amphibian Chytrid fungal infections varies with host life stage. BioRxiv 19:165779

    Google Scholar 

  • Sanches ALM, Vieira BH, Reghini MV, Moreira RA, Freitas EC, Espindola ELG, Daam MA (2017) Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio Rerio). Chemosphere 188:582–587

    Article  CAS  Google Scholar 

  • Sarikaya R, Yılmaz M (2003) Investigation of acute toxicity and the effect of 2, 4-D (2, 4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus Carpio L., 1758; Pisces, Cyprinidae). Chemosphere 52:195–201

    Article  CAS  Google Scholar 

  • Semlitsch RD (1990) Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can J Zool 68:1027–1030

    Article  Google Scholar 

  • Soloneski S, de Arcaute CR, Nikoloff N, Larramendy ML (2017) Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage evaluation using the Endo III and FPG alkaline comet assays. Environ Sci Pollut Res 24:10292–10300

    Article  CAS  Google Scholar 

  • Spieler M (2003a) Risk of predation affects aggregation size: a study with tadpoles of Phrynomantis Microps (Anura: Microhylidae). Anim Behav 65:179–184

    Article  Google Scholar 

  • Spieler M (2003b) Risk of predation affects aggregation size; a study with tadpoles of Phrynomantis Microps (Anura: Microhylidae). Anim Behav 65:179–184

    Article  Google Scholar 

  • Teplitsky C, Plenet S, Léna JP, Mermet N, Malet E, Joly P (2005) Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole. J Evol Biol 18:180–190

    Article  CAS  Google Scholar 

  • Thanomsit C (2016) Evaluation of abamectin effect on some biochemical constituents and histological alterations in Asian sea bass (Lates Calcarifer). J Sci Technol 24:72–78

    Google Scholar 

  • Travis J, Keen WH, Juilianna J (1985) The role of relative body size in a predator-prey relationship between dragonfly naiads and larval anurans. Oikos 45:59–65

    Article  Google Scholar 

  • Vasconcelos AM, Daam M, Santos LRA, Sanches ALM, Araújo CVM, Espíndola ELG (2016a) Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology 25:500–509. https://doi.org/10.1007/s10646-015-1608-4

    Article  CAS  Google Scholar 

  • Vasconcelos AM, Daam MA, dos Santos LR, Sanches AL, Araújo CV, Espíndola EL (2016b) Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology 25:500–509

    Article  CAS  Google Scholar 

  • Vasconcelos AM, Daam MA, de Resende JC, Casali-Pereira MP, Espíndola EL (2017) Survival and development of bullfrog tadpoles in microcosms treated with abamectin. Ecotoxicology 26:729–7371-9

    Article  CAS  Google Scholar 

  • Venesky MD, Wasserug RJ, Parris MJ (2010) The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southem leopard frog (Lithobates Sphenocephalus). Copeia 2010(3):481–486

    Article  Google Scholar 

  • Veronez SAC, Salla RV, Baroni VD, Barcarolli IF, Bianchini A, dos Reis Martinez CB, Chippari-Gomes AR (2016) Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates Catesbeianus. Aquat Toxicol 174:101–108

    Article  CAS  Google Scholar 

  • Vieira BH (2010) Efeitos do agrotoxico Vertimec_ no fitoplancton: um estudo laboratorial and “in situ”. MSc Thesis. Escola de Engenharia de São Carlos,Universidade de São Paulo São Carlos Brazil

  • Wagner N, Brühl CA (2017) The use of terrestrial life-stages of European amphibians in toxicological studies. Ecotoxicol Genotoxicol:143–162

  • Weldemariam T, Getachew M (2016) Impact of pesticides on birds from DDT to current fatality: a literature review. J Zool Stud 3:44–55

    Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363

    Article  Google Scholar 

  • Wirz MV, Saldiva PH, Freire-Maia DV (2005) Micronucleus test for monitoring genotoxicity of polluted river water in Rana Catesbeiana tadpoles. Bull Environ Contam Toxicol 75:1220–1227

    Article  CAS  Google Scholar 

  • Yu M, Yao J, Liang J, Zeng Z, Cui B, Zhao X, Cui H (2017) Development of functionalized abamectin poly (lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv 7:11271–11280

    Article  CAS  Google Scholar 

  • Zortéa T, Segat JC, Maccari AP, Sousa JP, Da Silva AS, Baretta D (2017) Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia Candida in tropical soils. Chemosphere 173:460–465

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Council for Scientific and Technological Development (CNPq)—the Brazilian research promotion agency—for funding the current study (case # 467801/2014-2) and for granting scholarships to students who participated in the research. In addition, we would like to thank Goiano Federal Institute (GO, Brazil) for their financial support, as well as Dr. Vaz BG and the students Pereira I and Costa DRO (Chemistry Institute at Federal University of Goiás, GO, Brazil) for their valuable assistance in the chemical analysis applied to the exposure waters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Malafaia.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, D.F., Montalvão, M.F., de Oliveira Mendes, B. et al. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. Environ Sci Pollut Res 25, 12932–12946 (2018). https://doi.org/10.1007/s11356-018-1562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1562-9

Keywords

Navigation