Skip to main content
Log in

Adapting the Vegetative Vigour Terrestrial Plant Test for assessing ecotoxicity of aerosol samples

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants, being recognized to show high sensitivity to air pollution, have been long used to assess the ecological effects of airborne contaminants. However, many changes in vegetation are now generally attributed to atmospheric deposition of aerosol particles; the dose–effect relationships of this process are usually poorly known. In contrast to bioindication studies, ecotoxicological tests (or bioassays) are controlled and reproducible where ecological responses are determined quantitatively. In our study, the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test: Vegetative Vigour Test (hereinafter referred to as ‘Guideline’) was adapted and its applicability for assessing the ecotoxicity of water-soluble aerosol compounds of aerosol samples was evaluated. In the aqueous extract of the sample, concentration of metals, benzenes, aliphatic hydrocarbons and PAHs was determined analytically. Cucumis sativus L. plants were sprayed with the aqueous extract of urban aerosol samples collected in a winter sampling campaign in Budapest. After the termination of the test, on day 22, the following endpoints were measured: fresh weight, shoot length and visible symptoms. The higher concentrations applied caused leaf necrosis due to toxic compounds found in the extract. On the other hand, the extract elucidated stimulatory effect at low concentration on both fresh weight and shoot length. The test protocol, based on the Guideline, seems sensitive enough to assess the phytotoxicity of aqueous extract of aerosol and to establish clear cause–effect relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abril GA, Wannaz ED, Pignata ML (2014) Source characterization and seasonal variations of atmospheric polycyclic aromatic hydrocarbons at an industrial and semi-urban area through a local-scale biomonitoring network using T. capillaris. Microchem J 116:77–86. doi:10.1016/j.microc.2014.04.008

    Article  CAS  Google Scholar 

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH et al (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86:546–555

    Article  CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colón-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56(421):2983–2994

    Article  CAS  Google Scholar 

  • Babula P, Vodicka O, Adam V, Kummerova M, Ladislav Havel L, Hosek J et al (2012) Effect of fluoranthene on plant cell model: tobacco BY-2 suspension culture. Environ Exp Bot 78:117–126

    Article  CAS  Google Scholar 

  • Balasooriya BLWK, Samson R, Mbikwa F, Vitharana UWA, Boeckx P, Van Meirvenne M (2009) Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environ Exp Bot 65:386–394. doi:10.1016/j.envexpbot.2008.11.009

    Article  CAS  Google Scholar 

  • Beyer WN, Green CE, Beyer M, Chaney RL (2013) Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting. Environ Pollut 179:167–176

    Article  CAS  Google Scholar 

  • Boutin C, Aya KL, Carpenter D, Thomas PJ, Rowland O (2012) Phytotoxicity testing for herbicide regulation: shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci Total Environ 415:79–92. doi:10.1016/j.scitotenv.2011.04.046

    Article  CAS  Google Scholar 

  • Carpenter C, Boutin C, Allison JE (2013) Effects of chlorimuron ethyl on terrestrial and wetland plants: levels of, and time to recovery following sublethal exposure. Environ Pollut 172:275–282. doi:10.1016/j.envpol.2012.09.007

    Article  CAS  Google Scholar 

  • Daresta BE, Italiano F, de Gennaro G, Trotta M, Tutino M, Veronico P (2015) Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants Chemosphere 119:37–42. doi:10.1016/j.chemosphere.2014.05.054

    Article  CAS  Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64

    Article  CAS  Google Scholar 

  • Dinno A (2017) Dunn’s test of multiple comparisons using rank sums, https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf

  • Filep Á, Drinovec L, Palágyi A, Manczinger L, Vágvölgyi CS, Bozóki Z et al (2015) Source specific cyto- and genotoxicity of atmospheric aerosol samples. Aerosol Air Qual Res 15:2325–2331

    CAS  Google Scholar 

  • Franzaring J, Kempenaar C, van der Eerden LJM (2001) Effects of vapours of chlorpropham and ethofumesate on wild plant species. Environ Pollut 114:21–28

    Article  CAS  Google Scholar 

  • Ge X, Li L, Chen Y, Chen H, Wu D, Wang J et al (2017) Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environ Pollut 225:74–85

    Article  CAS  Google Scholar 

  • Graber ER, Rudich Y (2006) Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753

    Article  CAS  Google Scholar 

  • Gratani L, Crescente MF, Petruzzi M (2000) Relationship between leaf life-span and photosynthetic activity of Quercus ilex in polluted urban areas (Rome). Environ Pollut 110:19–28

    Article  CAS  Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488. doi:10.1016/j.envpol.2006.08.033

    Article  Google Scholar 

  • Honour SL, Bell JNB, Ashenden TW, Cape JN, Power SA (2009) Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environ Pollut 157:1279–1286. doi:10.1016/j.envpol.2008.11.049

    Article  CAS  Google Scholar 

  • Hosseini H, Khoshgoftarmanesh AH (2013) The effect of foliar application of nickel in the mineral form andurea-Ni complex on fresh weight and nitrogen metabolism of lettuce. Sci Hortic 164:178–182

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Luo J, Xie M, Wang T, Lian H (2011) Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus). Chemosphere 82:1351–1357

    Article  CAS  Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105

    Article  CAS  Google Scholar 

  • Jen MS, Hoylman AM, Edwards NT, Walton BT (1995) Experimental method to measure gaseous uptake of 14C-toluene by foliage. Environ Exp Bot 35(3):389–398

    Article  CAS  Google Scholar 

  • Jochner S, Markevych I, Beck I, Traidl-Hoffmann C, Heinrich J, Menzel A (2015) The effects of short- and long-term air pollutants on plant phenology and leaf characteristics. Environ Pollut 206:382–389. doi:10.1016/j.envpol.2015.07.040

    Article  CAS  Google Scholar 

  • Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R (2010) Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ Pollut 158:788–794. doi:10.1016/j.envpol.2009.10.006

    Article  CAS  Google Scholar 

  • Khavaninzadeh AR, Veroustraete F, Buytaert JAN, Samson R (2014) Leaf injury symptoms of Tilia sp. as an indicator of urban habitat quality. Ecol Indic 41:58–64. doi:10.1016/j.ecolind.2014.01.014

    Article  Google Scholar 

  • Kumar R, Sharma S, Kaundal M, Sharma S, Thakur M (2016) Response of damask rose (Rosa damascena Mill.) to foliar application of magnesium (Mg), copper (Cu) and zinc (Zn) sulphate underwestern Himalayas. Ind Crop Prod 83:596–602

    Article  CAS  Google Scholar 

  • Lanz VA, Prevot ASH, Alfarra MR, Weimer S, Mohr C, DeCarlo PF et al (2010) Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. Atmos Chem Phys 10:10453–10471. doi:10.5194/acp-10-10453-2010

    Article  CAS  Google Scholar 

  • Lee MA, Power SA (2013) Direct and indirect effects of roads and road vehicles on the plant community. Environ Pollut 176:106–113. doi:10.1016/j.envpol.2013.01.018

    Article  CAS  Google Scholar 

  • Ling KA (2003) Using environmental and growth characteristics of plants to detect long-term changes in response to atmospheric pollution: some examples from British beechwoods. Sci Total Environ 310:203–210. doi:10.1016/S004896970200640X

    Article  CAS  Google Scholar 

  • Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Bio 21(S1):77–82

    Article  Google Scholar 

  • Mondaca P, Catrin J, Verdejo J, Sauvé S, Neaman A (2017) Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environ Pollut 223:146–152

    Article  CAS  Google Scholar 

  • Moraes RM, Klumpp A, Furlan CM, Klumpp G, Domingos M, Rinaldi MCS, Modesto IF (2002) Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environ Int 28(5):367–374

    Article  CAS  Google Scholar 

  • Oguntimehin I, Kondo H, Sakugawa H (2010a) The use of Sunpatiens (Impatiens spp.) as a bioindicator of some simulated air pollutants—using an ornamental plant as bioindicator. Chemosphere 81:273–281

    Article  CAS  Google Scholar 

  • Oguntimehin I, Eissa F, Sakugawa H (2010b) Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) fluoranthene mists negatively affected tomato plants. Chemosphere 78:877–884

    Article  CAS  Google Scholar 

  • Payne RJ, Stevens CJ, Dise NB, Gowing DJ, Pilkington MG, Phoenix GK, Bridget A, Emmett BA, Ashmore MR (2011) Impacts of atmospheric pollution on the plant communities of British acid grasslands. Environ Pollut 159:2602–2608. doi:10.1016/j.envpol.2011.06.009

    Article  CAS  Google Scholar 

  • Peachey CJ, Sinnett D, Wilkinson M, Morgan GW, Freer-Smith PH, Hutchings TR (2009) Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London. Environ Pollut 157:2291–2299

    Article  CAS  Google Scholar 

  • Pignata ML, Gudiño GL, Wannaz ED, Plá RR, González CM, Carreras HA, Orellana L (2002) Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut 120:59–68

    Article  CAS  Google Scholar 

  • Putaud JP, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R et al (2010) European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320. doi:10.1016/j.atmosenv.2009.12.011

    Article  CAS  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org /

  • Ribas A, Penuelas J (2003) Biomonitoring of tropospheric ozone phytotoxicity in rural Catalonia. Atmos Environ 37:63–71

    Article  CAS  Google Scholar 

  • Rodriguez JH, Weller SB, Wannaz ED, Klumpp A, Pignata ML (2011) Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecol Indic 11:1673–1680. doi:10.1016/j.ecolind.2011.04.015

    Article  CAS  Google Scholar 

  • Roosta HR, Hamidpour M (2011) Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci Hortic 129:396–402

    Article  CAS  Google Scholar 

  • Schreck E, Bonnard R, Laplanche C, Leveque T, Foucault Y, Dumat C (2012a) DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. J Environ Manag 112:233–239

    Article  CAS  Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012b) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427-428:253–262

    Article  CAS  Google Scholar 

  • Shafiq M, Iqbal MZ (2003) Effects of automobile pollution on the phenology and periodicity of some roadside plants. Pak J Bot 35(5):931–938

    Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017a) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK et al (2017b) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  Google Scholar 

  • Silva V, Pereira JL, Campos I, Keizer JJ, Gonçalves F, Abrantes N (2015) Toxicity assessment of aqueous extracts of ash from forest fires. Catena 135:401–408

    Article  CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Devendra Kumar Chauhan DK et al (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant PhysiolBiochem 110:50–58

    CAS  Google Scholar 

  • USEPA (2000) Method guidance and recommendations for whole effluent toxicity (WET) testing (40 CFR Part 136). EPA 821-B-00-004. U.S. Environmental Protection Agency, Office of Water

  • Varga B, Kiss G, Ganszky I, Gelencser A, Krivacsy Z (2001) Isolation of water-soluble organic matter from atmospheric aerosol. Talanta 55:561–572. doi:10.1016/s0039-9140(01)00446-5

    Article  CAS  Google Scholar 

  • Verma V, Rico-Martinez R, Kotra N, Rennolds C, Liu J, Snell TW, Weber RJ (2013) Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera: Monogononta). Environ Pollut 182:379–384

    Article  CAS  Google Scholar 

  • Waked A, Favez O, Alleman LY, Piot C, Petit JE, Delaunay T, Verlinden E, Golly B, Besombes JL, Jaffrezo JL, Leoz-Garziandia E (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14:3325–3346. doi:10.5194/acp-14-3325-2014

    Article  Google Scholar 

  • Wang W, Shi C, Yan Y, Yang Y, Zhou B (2016) Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3. Ecotoxicol Environ Saf 133:226–234

    Article  CAS  Google Scholar 

  • Wieczorek J, Sienkiewicz S, Pietrzak M, Wieczorek Z (2015) Uptake and phytotoxicity of anthracene and benzo[k]fluoranthene applied to the leaves of celery plants (Apium graveolens var. secalinum L.) Ecotox Environ Safe 115:19–25. doi:10.1016/j.ecoenv.2015.01.032

    Article  CAS  Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    Article  CAS  Google Scholar 

  • Wuytack T, Wuyts K, Van Dongen S, Baeten L, Kardel F, Verheyen K, Samson R (2011) The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L. Environ Pollut 159:2405–2411. doi:10.1016/j.envpol.2011.06.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BIONANO_GINOP-2.3.2-15-2016-00017 project. The authors thank the Hungarian Air Quality Reference Center for the aerosol samples. Special thanks go to the ELGOSCAR-2000 Environmental Technology and Water Management Ltd. (head office: 164 Soroksari u. H-1095 Budapest, Laboratory: H-8184 Balatonfuzfo) for analytical measurements. Mr Árpád Ferincz performed statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Kováts.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kováts, N., Horváth, E., Eck-Varanka, B. et al. Adapting the Vegetative Vigour Terrestrial Plant Test for assessing ecotoxicity of aerosol samples. Environ Sci Pollut Res 24, 15291–15298 (2017). https://doi.org/10.1007/s11356-017-9103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9103-5

Keywords

Navigation