Skip to main content

Advertisement

Log in

Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the capability of moso bamboo grown alone and in combination with Sedum plumbizincicola to remediate heavy metals. Monoculture of moso bamboo (MM), intercropping of moso bamboo × S. plumbizincicola (IMS), and control (uncultivated, CK) were established in Cu-, Zn-, and Cd-contaminated soil. Soil properties and heavy metal removal capacity were assessed. Results showed that the available and total heavy metal contents in soil (0–20 and 20–40 cm soil layers) were ranked IMS < MM < CK. Available Cu, Zn, and Cd contents were 65.0, 28.7, and 48.4% lower in the IMS and 52.8, 24.8, and 45.5% lower in the MM than those in the CK, respectively. In plants, Cu contents in bamboo rhizomes, branches, and leaves and those of Zn and Cd in all bamboo tissues were significantly higher in the IMS than in the MM. The bioconcentration and translocation factors of bamboo tissues showed an obviously increasing tendency from MM to IMS. Moso bamboo possessed the properties of endurance to heavy metals and high biomass production. Phytoremediation by moso bamboo in association with S. plumbizincicola is an economical strategy to promote heavy metal removal from metal-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • An LY, Pan YH, Wang ZB, Cheng Z (2011) Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 345:237–245

    Article  CAS  Google Scholar 

  • Antoniadis V, Golia EE, Shaheen SM, Rinklebe J (2017) Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ Geochem Health 39:319–330

    Article  CAS  Google Scholar 

  • Borghi M, Tognetti R, Monteforti G (2007) Responses of Populus × euramericana (P. deltoides × P. nigra) clone Addato increasing copper concentrations. Environ Exp Bot 61:66–73

    Article  CAS  Google Scholar 

  • Cao ZH, Zhou GM, Wen GS, Jiang PK, Zhuang SY, Qin H, Wong MH (2011) Bamboo in Subtropical China: efficiency of solar conversion into biomass and CO2 sequestrations. Bot Rev 77:190–196

  • Chen X, Zhang X, Zhang Y, Booth T, He X (2009) Changes of carbon stocks in bamboo stands in China during 100 years. For Ecol Manag 258:1489–1496

    Article  Google Scholar 

  • Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z, Peng D, Yan W, Liu D (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 5:13554

  • Chen J, Shafi M, Wang Y, Wu J, Ye Z, Liu C, Zhong B, Guo H, He L, Liu D (2016) Organic acid compounds in root exudation of moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res 23:20977–20984

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  Google Scholar 

  • Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P (2016) Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation 18:134–140

  • Disante KB, Fuentes D, Cortina J (2010) Sensitivity to zinc of Mediterranean woody species important for restoration. Sci Total Environ 408:2216–2225

    Article  CAS  Google Scholar 

  • Garcia G, Zanuzzi AL, Faz A (2005) Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation 16:187–194

    Article  CAS  Google Scholar 

  • GB15218-2008 (2008) Environmental quality standards for soil. National Standard of the People’s Republic of China, Beijing

    Google Scholar 

  • Haiyan W, Stuanes AO (2003) Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China. Water Air Soil Pollut 147:79–107

    Article  Google Scholar 

  • Hu PJ, Wang YD, Przybyłowicz WJ, Li Z, Barnabas A, Wu LH, Luo YM, Mesjasz-Przybyłowicz J (2015) Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally. Plant Soil 388:267–282

  • Kabata A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Washington

    Google Scholar 

  • Kirkby E (2012) Nutritional physiology—introduction, definition and classification of nutrients. In: Marschner P (ed) Mineral nutrition of higher plants, third ed. Academic Press, San Diego

    Google Scholar 

  • Li YF, Zhou GM, Jiang PK, Wu JS, Lin L (2011) Carbon accumulation and carbon forms in tissues during the growth of young bamboo (Phyllostachys pubescens). Bot Rev 77:278–286

  • Li S, Wang F, Ru M, Ni W (2014) Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site—a hydroponics experiment. Int J Phytoremediation 16:1257–1267

  • Li S, Chen J, Islam E, Wang Y, Wu J, Ye Z, Yan W, Peng D, Liu D (2016) Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere 153:107–114

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1969) Equilibrium relationships of Zn2+, Fe3+, Ca2+, and H+ with EDTA and DTPA in soils. Soil Sci Soc Am J 33:62–68

  • Liu D, Chen J, Mahmood Q, Li S, Wu J, Ye Z, Peng D, Yan W, Lu K (2014) Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res 21:13615–13624

    Article  CAS  Google Scholar 

  • Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP (2015) Lead accumulation and tolerance of moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 16:123–130

  • Lu RK (2000) Analysis methods of soil agricultural chemistry. China Agricultural Science and Technology Publishing House, Beijing

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington, pp 1–19

    Google Scholar 

  • Opik H, Rolfe SA (2005) The physiology of flowering plants. Fourth edition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1–63

    CAS  Google Scholar 

  • Petranich E, Acquavita A, Covelli S, Emili A (2017) Potential bioaccumulation of trace metals in halophytes from salt marshes of a northern Adriatic coastal lagoon. J Soils Sediments 17:1986–1998

    Article  CAS  Google Scholar 

  • Rodríguez-Bocanegra J, Roca N, Febrero A, Bort J (2017) Assessment of heavy metal tolerance in two plant species growing in experimental disturbed polluted urban soil. J Soils Sediments 1–13. https://doi.org/10.1007/s11368-017-1666-8

  • Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  CAS  Google Scholar 

  • Song XZ, Peng CH, Zhou GM, Jiang H, Wang WF, Xiang WH (2013) Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain, China. J Mt Sci 10:363–369

    Article  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut 107:377–389

    Article  CAS  Google Scholar 

  • Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:1–11

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wieshammer G, Unterbrunner R, García TB, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264

    Article  CAS  Google Scholar 

  • Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM (2013) Sedum plumbizincicola XH Guo et SB Zhou ex LH Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299:487–498

  • Yan YP, He JY, Zhu C (2006) Accumulation of copper in brown rice and effect of copper on rice growth and grain yield in different rice cultivars. Chemosphere 65:1690–1696

    Article  CAS  Google Scholar 

  • Yan W, Mahmood Q, Peng D, Fu W, Chen T, Wang Y, Li S, Chen J, Liu D (2015) The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil Tillage Res 153:120–130

    Article  Google Scholar 

  • Yen TM (2015) Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J For Res 20:1–8

    Article  CAS  Google Scholar 

  • Yen TM, Lee JS (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For Ecol Manag 261:995–1002

    Article  Google Scholar 

  • Zaier H, Tahar G, Lakhdar A, Baioui R, Ghabrichea R, Mnasri M, Sghair S, Lutts S, Abdellya C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

  • Zhou G, Meng C, Jiang P, Xu Q (2011) Review of carbon fixation in bamboo forests in China. Bot Rev 77:262–270

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank anonymous referees for their valuable comments.

Funding information

This study was supported by the Special Fund for Scientific Research of the Forestry Public Welfare Industry (Grant no. 201504407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheke Zhong.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, F., Zhong, Z., Zhang, X. et al. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Environ Sci Pollut Res 24, 27244–27253 (2017). https://doi.org/10.1007/s11356-017-0326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0326-2

Keywords

Navigation