Skip to main content
Log in

Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new effective multi-dithiocarbamate heavy metal precipitant, disodium N,N-bis-(dithiocarboxy) ethanediamine (BDE), was synthesized by mixing ethanediamine with carbon disulfide under alkaline conditions, and it was utilized for removing trace ethylenediaminetetraacetic acid copper (II) (EDTA-Cu) from wastewater. Its structure was confirmed by ultraviolet spectra, Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The removal performance of EDTA-Cu by BDE was evaluated according to BDE dosage, initial concentration, pH, and reaction time through single-factor experiments. With the optimized conditions of a pH range of 3–9, dosage ratio of BDE/Cu of 1:1, PAM dosage of 1 mg/L, and reaction time of 4 min, the removal efficiency of Cu2+ was more than 98 % from simulated wastewater containing EDTA-Cu with initial concentrations of 5–100 mg/L. Treatment of actual EDTA-Cu wastewater showed that BDE performed superior effectiveness, and the average residential concentration of Cu2+ was 0.115 mg/L. Besides, the stability of chelated precipitate and the reaction mechanism of BDE and EDTA-Cu were also introduced. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the chelated precipitate was non-hazardous and stable in weak acid and alkaline conditions. The BDE reacts with EDTA-Cu at a stoichiometric ratio, and the removal of Cu2+ was predominantly achieved through the replacement reaction of BDE and EDTA-Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  • Aydin U, Buluta Y, Yerlikayab C (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manag 87(1):37–45

    Article  CAS  Google Scholar 

  • Bai L, Hu HP, Fu W, Wan J, Cheng XL, Lei ZG, Xiong L, Chen QY (2011) Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J Hazard Mater 195:261–275

    Article  CAS  Google Scholar 

  • Baltpurvins KA, Burns RC, Lawrance GA (1996) Use of the solubility domain approach for the modeling of the hydroxide precipitation of heavy metals from wastewater. Environ Sci Technol 30(5):493–1499

    Article  Google Scholar 

  • Brown DA, Glass WK, Burke MA (1976) The general use of IR spectral criteria in discussions of the bonding and structure of metal dithiocarbamates. Spectrochim Acta 32(1):137–143

    Article  Google Scholar 

  • Burke JM, Fackler JP (1972) Vibrational spectra of the thiocarbonate complexes of nickel (II), palladium (II), and platinum (II). Inorg Chem 11(11):2744–2749

    Article  CAS  Google Scholar 

  • Chang YK, Chang JE, Lin TT, Hsu YM (2002) Integrated copper-containing wastewater treatment using xanthate process. J Hazard Mater 94(1):89–99

    Article  CAS  Google Scholar 

  • Fu FL, Chen RM, Xiong Y (2007a) Comparative investigation of N,N-bis-(dithiocarboxy)piperazine and diethyldithiocarbamate as precipitants for Ni(II) in simulated wastewater. J Hazard Mater 142(1–2):437–442

    Article  CAS  Google Scholar 

  • Fu FL, Zeng HY, Cai QH, Yu J, Xiong Y (2007b) Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 69(11):1783–1789

    Article  CAS  Google Scholar 

  • Fu H, Lv XS, Yang YP, Hua XX (2012) Removal of micro complex copper in aqueous solution with a dithiocarbamate compound. Desalin Water Treat 39(1–3):103–111

    Article  CAS  Google Scholar 

  • Gyliene O, Vengris T, Nivinskiene O, Binkiene R (2010) Decontamination of solutions containing Cu (II) and ligands tartrate, glycine and quaduol using metallic iron. J Hazard Mater 175(1–3):452–459

    Article  CAS  Google Scholar 

  • Halls DJ (1969) The properties of dithiocarbamates: a review. Microchim Acta 57(1):62–77

    Article  Google Scholar 

  • Issabayeva G, Aroua MK, Sulaiman NM (2010) Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 262(1–3):94–98

    Article  CAS  Google Scholar 

  • Jing XS, Liu FQ, Yang X, Ling PP, Li LJ, Long C, Li AM (2009) Adsorption performances and mechanisms of the newly synthesized NN-di(carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J Hazard Mater 167(1–3):589–596

    Article  CAS  Google Scholar 

  • Juang RS, Lin LC (2001) Electrochemical treatment of copper from aqueous citrate solutions using a cation-selective membrane. Sep Purif Technol 22-23:627–635

    Article  Google Scholar 

  • Kabdasli I, Arslan T, Hancıa TÖ, Alatona IA, Tünay O (2009) Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J Hazard Mater 165(1–3):838–845

    Article  CAS  Google Scholar 

  • Kolodynska D, Hubicka H, Hubicki Z (2008) Sorption of heavy metal ions from aqueous solutions in the presence of EDTA on monodisperse anion exchangers. Desalination 227(1–3):150–166

    Article  CAS  Google Scholar 

  • Korshin GV, Chang HS, Frenkel AI, Ferguson JF (2007) Structural study of the incorporation of heavy metals into solid phase formed during the oxidation of EDTA by permanganate at high pH environ. Sci Technol 41(7):2560–2565

    Article  CAS  Google Scholar 

  • Lan SH, Ju F, Wu XW (2012) Treatment of wastewater containing EDTA-Cu (II) using the combined process of interior microelectrolysis and Fenton oxidation-coagulation. Sep Purif Technol 89:117–124

    Article  CAS  Google Scholar 

  • Li LZ (2012) Synthesis of a carbamide-based dithiocarbamate chelator for the removal of heavy metal ions from aqueous solutions. J Ind Eng Chem 20(2):586–590

    Article  Google Scholar 

  • Liu LH, Wu J, Li X, Ling YL (2013) Synthesis of poly (dimethyldiallylammonium chloride-co-acrylamide)-graft-triethylenetetramine-dithiocarbamate and its removal performance and mechanism of action towards heavy metal ions. Sep Purif Technol 103:92–100

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Velstyn M, Henke KR, Atwood DA (2002) Advanced mercury removal from gold leachate solutions prior to gold and silver extraction a field study from an active gold mine in Peru. Environ Sci Technol 36(7):1636–1639

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Velstyn M, Henke KR, Atwood DA (2003) Soft metal preferences of 13-benzenediamidoethanethiol. Water Res 37(3):579–584

    Article  CAS  Google Scholar 

  • Mauchauffée S, Meux E (2007) Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere 69(5):763–768

    Article  Google Scholar 

  • Nakamoto K, Fujita J, Condrate RA, Morimoto Y (1963) Infrared spectra of metal chelate compounds IX a normal coordinate analysis of dithiocarbamato complexes. J Chem Phys 39(2):423–427

    Article  CAS  Google Scholar 

  • Ng SW, Das VGK, Skelton BW, White AH (1989) Organotin thiosemicarbazates crystal structure of triphenyltin 1-amino-4-(2-hydroxyphenyl)-23-diazapenta-(E)-1(E)-3-dienyl-1-thiolate. J Organomet Chem 377(2–3):211–220

    CAS  Google Scholar 

  • Park EH, Jung JH, Chung HH (2006) Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu (II)/Fe (III)-EDTA system by TiO2 photocatalysis. Chemosphere 64(3):432–436

    Article  CAS  Google Scholar 

  • Rai A, Sengupta SK, Pandey OP (2006) Lanthanum (III) and praseodymium (III) derivatives with dithiocarbamates derived from α-amino acids. Spectrochim Acta A 64(3):789–794

    Article  Google Scholar 

  • Sarwar M, Ahmad S, Ahmad S, Ali S, Awan SA (2007) Copper (II) complexes of pyrrolidine dithiocarbamate. Transit Met Chem 32(2):199–203

    Article  CAS  Google Scholar 

  • Seshadri H, Chitra S, Paramasivan K, Sinha PK (2008) Photocatalytic degradation of liquid waste containing EDTA. Desalination 232(1–3):139–144

    Article  CAS  Google Scholar 

  • Saegusa T, Kobayashi S, Hayashi K, Yamada A (1978) Preparation and chelating properties of mercaptoethylated and dithiocarboxylated poly (styrene-g-ethylenimine)s. Polym J 10:403–408

    Article  CAS  Google Scholar 

  • Shafaei A, Pajootan E, Nikazar M, Arami M (2011) Removal of Co (II) from aqueous solution by electrocoagulation process using aluminum electrodes. Desalination 279(1–3):121–126

    Article  CAS  Google Scholar 

  • Singh N, Bhattacharya S (2012) Synthesis and characterization of some triorgano diorgano monoorganotin and a triorganolead heteroaromatic dithiocarbamate complexes. J Organomet Chem 700:69–77

    Article  CAS  Google Scholar 

  • Tyapochkin EM, Kozliak EI (2005) Kinetic and binding studies of the thiolate-cobalt tetrasulfophthalocyanine anaerobic reaction as a subset of the merox process. J Mol Catal A Chem 242(1–2):1–17

    Article  CAS  Google Scholar 

  • USEPA (1992) Toxicity characteristic leaching procedure EPA method 1311. United States Environmental Protection Agency, Washington DC 35 p

    Google Scholar 

  • Wu LY, Wang HJ, Lan HC, Liu HJ, Qu JH (2013) Adsorption of Cu (II)-EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution. Sep Purif Technol 117:118–123

    Article  CAS  Google Scholar 

  • Wu PX, Zhou JB, Wang XR, Dai YP, Dang Z, Zhu NW, Li P, Wu JH (2011) Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite behaviors and mechanisms. Desalination 277(1–3):288–295

    Article  CAS  Google Scholar 

  • Zhao X, Guo LB, Zhang BF, Liu HJ, Qu JH (2013) Photo electrocatalytic oxidation of Cu-II-EDTA at the TiO2 electrode and simultaneous recovery of Cu-II by electrodeposition. Environ Sci Technol 47(9):4480–4488

    Article  CAS  Google Scholar 

  • Zhen HB, Xu Q, Hu YY, Cheng JH (2012) Characteristics of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid-Cu (EDTA-Cu) contaminated wastewater. J Chem Eng 209:547–557

    Article  CAS  Google Scholar 

  • Zhou P, Huang JC, Li AWF, Wei S (1999) Heavy metal removal from wastewater in fluidized and reactor. Water Res 33(8):1918–1924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science of Guangdong-Major Basic Research and Cultivation (No.2015 A030308008), Special Fund of Department of Environmental Protection of Guangdong Province (Grant 2016), Science and Technology Planning Project of Guangdong Province (No.2016 A040403068), and Education Special Funds of University Discipline Construction of Guangdong Province (No.2014KTSP022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiyu Sun.

Additional information

Responsible editor: Santiago V. Luis

The highlights of the study are as follow:

• A new multi-dithiocarbamate heavy metal precipitant was prepared.

• The precipitant possesses more effective performance than other sulfur-containing heavy metal precipitants at pH < 3.

• Deepened discussion of reaction mechanism and removal performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Ye, M., Yan, P. et al. Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II). Environ Sci Pollut Res 23, 19696–19706 (2016). https://doi.org/10.1007/s11356-016-7156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7156-5

Keywords

Navigation