Skip to main content

Advertisement

Log in

The toxicity of arsenic(III), chromium(VI) and zinc to groundwater copepods

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Groundwater ecosystems globally are threatened by anthropogenic contamination, yet there are few ecotoxicological data using obligate groundwater biota on which to base risk assessments. Copepods are found inhabiting aquifers of different geologies around the world and so are a useful taxon for use in ecotoxicological studies of groundwater. The aim of this study was to test the sensitivity of obligate groundwater copepods to metal contaminants (arsenic(III), chromium(VI) and zinc) in groundwater in static 96 h, 14 days and 28 days exposure tests. The copepods were variably sensitive to As, Cr and Zn, with Cr being the most toxic across all taxa. No taxon was consistently most sensitive and there was no apparent relationship between the hardness, pH and organic carbon concentration of the diluent water and the sensitivity of biota. As expected, toxicity increased with exposure period and we encourage the use of longer exposure periods in future toxicity tests with groundwater organisms to reflect the greater exposure periods likely to be associated with groundwater contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi SA, Nipaney PC, Soni R (1988) Studies on environmental management of mercury (ii), chromium (vi) and zinc (ii) with respect to the impact on some arthropods and protozoans—toxicity of zinc (ii). Int J Environ Stud 32:181–187

    Article  CAS  Google Scholar 

  • ANZECC and ARMCANZ (2000) Australian and New Zealand water quality guidelines for fresh and marine waters. Australian and New Zealand environment and conservation council and agricultural and resource management council of Australia and New Zealand, Canberra, Australia.

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Asmyhr MG, Hose GC, Graham P, Stow A (2014) Fine-scaled genetics of subterranean syncarids. Freshw Biol 59:1–11

    Article  Google Scholar 

  • Avramov M, Schmidt SI, Griebler C (2013) A new bioassay for the ecotoxicological testing of VOCs on groundwater invertebrates and the effects of toluene on Niphargus inopinatus. Aquat Toxicol 130:1–8

    Article  Google Scholar 

  • Barber I, Baird DJ, Calow P (1990) Clonal variation in general responses of Daphnia magna Straus to toxic stress. II. Physiological effects. Funct Ecol 4:409–414

    Article  Google Scholar 

  • Baudouin MF, Scoppa P (1974) Acute toxicity of various metals to freshwater zooplankton. Bull Environ Contam Toxicol 12:745–751

    Article  CAS  Google Scholar 

  • Baun A, Kløft L, Bjerg PL, Nyholm N (1999) Toxicity testing of organic chemicals in groundwater polluted with landfill leachate. Environ Toxicol Chem 18:2046–2053

    Article  CAS  Google Scholar 

  • Biesinger KE, Christensen GM (1972) Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J Fish Res Board Can 29:1691–1700

    Article  CAS  Google Scholar 

  • Burton GA Jr, Lazorchak JM, Waller WT, Lanza GR (1987) Arsenic toxicity changes in the presence of sediment. Bull Environ Contam Toxicol 38:491–499

    Article  CAS  Google Scholar 

  • Canivet V, Chambon P, Gibert J (2001) Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Arch Environ Contam Toxicol 40:345–354

    Article  CAS  Google Scholar 

  • Connell DW, Lam P, Richardson B, Wu R (1999) Introduction to ecotoxicology. Wiley-Blackwell, Malden, p 180

    Google Scholar 

  • Costa FO, deWaard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PD (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295

    Article  CAS  Google Scholar 

  • Crevecoeur S, Debacker V, Joaquim-Justo C, Gobert S, Scippo M-L, Dejonghe W, Martin P, Thome J-P (2011) Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach. Environ Pollut 159:2461–2466

    Article  CAS  Google Scholar 

  • Daam MA, Silva E, Leitao S, Trindade MJ, Cerejeira MJ (2010) Does the actual standard of 0.1 μg/L overestimate or underestimate the risk of plant protection products to groundwater ecosystems? Ecotoxicol Environ Saf 73:750–756

    Article  CAS  Google Scholar 

  • Di Lorenzo T, Di Marzio WD, Spigoli D, Baratt M, Messana G, Cannicci S, Galassi DMP (2015) Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw Biol 60:426–435

    Article  Google Scholar 

  • Di Marzio WD, Castaldo D, Pantani C, Di Cioccio A, Di Lorenzo T, Saenz ME, Galassi DMP (2009) Relative sensitivity of hyporheic copepods to chemicals. Bull Environ Contam Toxicol 82:488–491

    Article  Google Scholar 

  • Ewell WS, Gorsuch JW, Kringle RO, Robillard KA, Spiegel RC (1986) Simultaneous evaluation of the acute effects of chemicals on 7 aquatic species. Environ Toxicol Chem 5:831–840

    Article  CAS  Google Scholar 

  • Fargasova A (1994) Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotoxicol Environ Saf 27:210–213

    Article  CAS  Google Scholar 

  • Fryirs K, Freidman B, Williams R, Jacobsen G (2014a) Peatlands in eastern Australia? Sedimentology and age structure of Temperate Highland Peat Swamps on Sandstone (THPSS) in the Southern Highlands and Blue Mountains of NSW, Australia. The Holocene 24:1527–1538

    Article  Google Scholar 

  • Fryirs K, Gough J, Hose GC (2014b) The geomorphic character and hydrological function of an upland swamp, Budderoo plateau, southern highlands, NSW, Australia. Phys Geogr 35:313–334

    Article  Google Scholar 

  • Galassi DMP (2001) Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453:227–253

    Article  Google Scholar 

  • Gundersen P, Steinnes E (2003) Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Res 37:307–318

    Article  CAS  Google Scholar 

  • Gustavson KE, Sonsthagen SA, Crunkilton RA, Harkin JM (2000) Groundwater toxicity assessment using bioassay, chemical, and toxicity identification evaluation analyses. Environ Toxicol 15:421–430

    Article  CAS  Google Scholar 

  • Guzik MT, Austin AD, Cooper SJB, Harvey MS, Humphreys WF, Bradford T, Eberhard SM, King RA, Leys R, Muirhead KA, Tomlinson M (2010). Is the Australian subterranean fauna uniquely diverse? Invertebr Syst. 24:407–418

  • Hahn HJ (2006) The GW-Fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36:119–137

    Article  Google Scholar 

  • Hartung T, Bremer S, Casati S, Coecke S, Corvi S, Fortaner S, Gribaldo L, Halder M, Hoffmann S, Janusch Roi A, Prieto P, Sabbioni E, Scott L, Worth A, Zuang V (2004) A modular approach to the ECVAM principles on test validity. Altern Lab Anim 32:467–472 Available: http://ecvam.jrc.ec.europa.eu/publication/Hartung-1.pdf

    CAS  Google Scholar 

  • Harvey MS (2002) Short-range endemism in the Australian fauna: some examples from non-marine environments. Invertebr Syst 16:555–570

    Article  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • Hoff D, Lehmann W, Pease A, Raimondo S, Russom C, Steeger T (2010) Predicting the toxicities of chemicals to aquatic animal species. US Environmental Protection Agency, Washington Available at http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/whitepaper_effects.pdf. Accessed 10/11/15

    Google Scholar 

  • Hose GC (2005) Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum Ecol Risk Assess 11:951–966

    Article  CAS  Google Scholar 

  • Hose GC (2007) A response to comments on assessing the need for groundwater quality guidelines using the species sensitivity distribution approach. Hum Ecol Risk Assess 13:241–246

    Article  Google Scholar 

  • Hose GC (2008) Stygofauna baseline assessment for Kangaloon Borefield Investigations-Southern Highlands. NSW. Report to Sydney Catchment Authority, Access Macquarie Ltd, North Ryde, Australia

    Google Scholar 

  • Hose GC, Asmyhr MG, Cooper SJB, Humphreys WF (2015) Down under down under: Austral groundwater life. In: Stow A, Maclean N, Holwell GI (eds) Austral ark. Cambridge University Press, Cambridge, pp. 512–536

    Google Scholar 

  • Hose GC, Bailey J, Stumpp C, Fryirs K (2014) Groundwater depth and topography correlate with vegetation structure of an upland peat swamp, Budderoo Plateau, NSW, Australia. Ecohydrology 7:1392–1402

    Google Scholar 

  • Humphreys W (2006) Aquifers: the ultimate groundwater dependent ecosystem. Aust J Bot 54:115–132

    Article  Google Scholar 

  • Hutchinson TH, Williams TD, Eales GJ (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Mar Environ Res 38:275–290

    Article  CAS  Google Scholar 

  • Hyne RV, Pablo F, Julli M, Markich SJ (2005) Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia. Environ Toxicol Chem 24:1667–1675

    Article  CAS  Google Scholar 

  • Kalbitz K, Wennrich R (1998) Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci Total Environ 209:27–39

    Article  CAS  Google Scholar 

  • Klockenkämper R, von Bohlen A (1996) Element analysis of environmental samples by total reflection x-ray fluorescence: a review. X-Ray Spectrom 25:156–162

    Article  Google Scholar 

  • Korbel K, Hose GC (2015) Water quality, habitat, site or climate? Identifying environmental correlates of the distribution of groundwater biota. Freshwat Sci 34:329–343

    Article  Google Scholar 

  • Lajus D, Sukhikh N, Alekseev V (2015) Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex. Ecol Evol 5:2374–2385

    Article  Google Scholar 

  • Lategan MJ, Hose GC (2014) Development of a groundwater fungal strain as a tool for toxicity assessment. Environ Toxicol Chem 33:2826–2834

    Article  CAS  Google Scholar 

  • Lategan MJ, Klare W, Kidd S, Hose GC, Nevalainen H (2016) The unicellular fungal tool RhoTox for risk assessments in groundwater systems. Ecotoxicol Environ Saf 132:18–25

  • Lazorchak JM, Smith ME, Haring HJ (2009) Development and validation of a Daphnia magna four-day survival and growth test method. Environ Toxicol Chem 28:1028–1034

    Article  CAS  Google Scholar 

  • Lima A, Curtis C, Hammermeister D, Markee T, Northcott CE, Brooke LT (1984) Acute and chronic toxicities of arsenic(III) to fathead minnows, flagfish, daphnids, and an amphipod. Arch Environ Contam Toxicol 13:595–601

    Article  CAS  Google Scholar 

  • Meinel W, Krause R, Musko J (1988) Zur Korrelation zwischen Zink und verscheidenen pH-Werten in ihrer toxischen Wirkung auf einige Grundwasser-Organismen. Z Angew Zool 75:159–182

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  CAS  Google Scholar 

  • Mirenda RJ (1986) Acute toxicity and accumulation of zinc in the crayfish, Orconectes-virilis (Hagen). Bull Environ Contam Toxicol 37:387–394

    Article  CAS  Google Scholar 

  • Nielsen OK, Ritz C, Streibig JC (2004) Nonlinear mixed-model regression to analyze herbicide dose-response relationships. Weed Technol 18:30–37

    Article  CAS  Google Scholar 

  • Notenboom J, Cruys K, Hoekstra J, Vanbeelen P (1992) Effect of ambient oxygen concentration upon the acute toxicity of chlorophenols and heavy-metals to the groundwater copepod Parastenocaris germanica (Crustacea). Ecotoxicol Environ Saf 24:131–143

    Article  CAS  Google Scholar 

  • Nowak C, Vogt C, Diogo JB, Schwenk K (2007) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022

    Article  CAS  Google Scholar 

  • OECD (2005) OECD guidance document 34—Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. ENV/JM/MONO(2005)14. Organization for Economic Cooperation and Development, Paris Available: http://appli1.oecd.org/olis/2005doc.nsf/linkto/env-jm-mono(2005)14

    Google Scholar 

  • Park EJ, Jo HJ, Jung J (2009) Combined effects of pH, hardness and dissolved organic carbon on acute metal toxicity to Daphnia magna. J Ind Eng Chem 15:82–85

    Article  CAS  Google Scholar 

  • Paulauskis JD, Winner RW (1988) Effects of water hardness and humic acid on zinc toxicity to Daphnia magna Straus. Aquat Toxicol 12:273–290

    Article  CAS  Google Scholar 

  • Pesce GL, De Laurentiis P, Humphreys WF (1996) Copepods from ground waters of Western Australia, I. The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea: Copepoda: Cyclopidae). Records of the Western Australian Museum 18:67–76

  • Plénet S (1999) Metal accumulation by an epigean and a hypogean freshwater amphipod: considerations for water quality assessment. Water Environ Res 71:1298–1309

    Article  Google Scholar 

  • Prosser S, Martínez-Arce A, Elías-Gutiérrez M (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Mol Ecol Resour 13:1151–1155

    CAS  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Raimondo S, Montague BJ, Barron MG. (2007) Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish. Environ Toxicol Chem 26:2019–23

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Article  CAS  Google Scholar 

  • Rainbow PS, Dallinger R (1993) Metal uptake, regulation and excretion in freshwater invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton, pp. 119–132

    Google Scholar 

  • Reboleira AS, Abrantes N, Oromí P, Gonçalves F (2013) Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: general aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut 224:1–9

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  • Thulin B, Hahn HJ (2008) Ecology and living conditions of groundwater fauna. Technical Report TR-08-06. Swedish Nuclear Fuel and Waste Management Co, Stockholm Available at www.skb.se/upload/publications/pdf/TR-08-06.pdf. Accessed 22/04/15

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipsk A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25:1441–1441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the assistance of Ashleigh Keast and Sarah Stephenson who both contributed to laboratory and field work. The comments of two anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Hose.

Ethics declarations

The collection of invertebrates from Budderoo National Park was done under NSW National Parks collection permit SL100800.

Funding

This was supported by CRC CARE project 1-1-08-06/7 and NSW Environmental Trust project 2005/RD/0108.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 52 kb)

ESM 2

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hose, G.C., Symington, K., Lott, M.J. et al. The toxicity of arsenic(III), chromium(VI) and zinc to groundwater copepods. Environ Sci Pollut Res 23, 18704–18713 (2016). https://doi.org/10.1007/s11356-016-7046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7046-x

Keywords

Navigation