Skip to main content
Log in

Environmental evaluation of dredged sediment submitted to a solidification stabilization process using hydraulic binders

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose: Dredging of sediments, a requirement for harbor maintenance, removes millions of tons of mineral wastes, contaminated at varying degrees with trace metals, from the water. In previous investigations, Cu and Zn have been identified as highly concentrated trace metals associated to sulfides, mineral phases sensitive to oxidation. In order to ensure their sustainable management, the solidification/stabilization (S/S) and/or the valorization of contaminated sediments as secondary raw materials is a way to be promoted. Indeed, their reuse as a substitute of sand in cemented mortar formulation would allow combining both treatment and valorization of such wastes. Methods: In the present study, the environmental assessment of mortars formulated with raw and weathered marine sediments (in particular contaminated with Cu, Pb and Zn), compared to sand reference mortars, was conducted through two kinetic leaching tests: weathering cell tests (WCTs), in which mortars were crushed and leached twice a week, and a tank monolith leaching test (MLT), in which leaching was performed on monolithic mortars with increasing leachate renewal time. Results: In both leaching tests, calcium and sulfur were released continuously from sediment mortars, showing the oxidation-neutralization processes of sulfides and carbonates. In the MLT, Cu was released by sediment mortars through diffusion, particularly by weathered mortars, at low concentrations during 60 days of the test duration. With the more aggressive WCT, Cu concentrations were higher at the beginning but became negligible after 7 days of testing. Pb was released through diffusion mechanisms until depletion in both tests, whereas Zn was particularly well immobilized in the cemented matrices. Conclusions: The S/S process applied using hydraulic binders proved to be efficient in the stabilization of Cu, Pb, and Zn highly presents in studied sediments, and further valorization in civilian engineering applications could be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostini F, Skoczylas F, Lafhaj Z (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cem Concr Compos 29:270–278

    Article  CAS  Google Scholar 

  • AFNOR. (1986) Essais des eaux—dosage des ions sulfates—méthode néphélométrique. NF T 90–040

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Aubertin M, Bernier L, Bussière B (2002) Environnement et gestion des rejets miniers [ressource électronique]: manuel sur cédérom: Mont-Royal. Presses internationales Polytechnique, Québec

    Google Scholar 

  • ASTM. (2010) Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. ASTM D4404-10

  • Barna R, Sanchez F, Moszkowicz P, Méhu J (1997) Leaching behavior of pollutants in stabilized/solidified wastes. J Hazard Mater 52:287–310

    Article  CAS  Google Scholar 

  • Ben Allal L, Ammari M, Frar I, Azmani A, Clastres P, Jullien S (2011) Stabilization of contaminated canal sediments. Eur J Environ Civil Eng 15:293–302

    Article  Google Scholar 

  • Benzaazoua M, Bussière B, Dagenais A. Comparison of kinetic tests for sulfide mine tailings. Proceedings of tailings and mine waste ‘01, Balkema, Fort Collins 2001: 263–272

  • Benzaazoua M, Bussière B, Dagenais AM, Archambault M (2004a) Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46:1086–1101

    Article  CAS  Google Scholar 

  • Benzaazoua M, Fall M, Belem T (2004b) A contribution to understanding the hardening process of cemented pastefill. Miner Eng 17:141–152

    Article  CAS  Google Scholar 

  • Bisone S, Chatain V, Blanc D, Gautier M, Bayard R, Sanchez F, Gourdon R (2016) Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil. Environ Earth Sci 75:306. doi:10.1007/s12665-015-5203-z, 1–9

    Article  Google Scholar 

  • Bouzahzah H, Benzaazoua M, Bussiere B, Plante B (2014) Prediction of acid mine drainage: importance of mineralogy and the test protocols for static and kinetic tests. Mine Water Environ 33:54–65

    Article  CAS  Google Scholar 

  • Bouzahzah H, Benzaazoua M, Mermillod-Blondin R, Pirard E. A novel procedure for polished section preparation for automated mineralogy avoiding internal particle settlement. 12th International Congress for Applied Mineralogy. Istanbul, Turkey, 2015

  • Bouzahzah H, Califice A, Benzaazoua M, Mermillod-Blondin R, Pirard E. Modal analysis of mineral blends using optical image analysis versus X ray diffraction. Proceedings of International Congress for Applied Mineralogy ICAM08. AusIMM, Brisbane, Australia, 2008

  • Caplat C, Texier H, Barillier D, Lelievre C (2005) Heavy metals mobility in harbour contaminated sediments: the case of Port-en-Bessin. Mar Pollut Bull 50:504–511

    Article  CAS  Google Scholar 

  • Cappuyns V, Deweirt V, Rousseau S (2015) Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers’ perspective. Waste Manag 38:372–380

    Article  Google Scholar 

  • Casado-Martínez MC, Forja JM, DelValls TA (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. J Hazard Mater 163:1353–1359

    Article  Google Scholar 

  • Chatain V, Benzaazoua M, Loustau Cazalet M, Bouzahzah H, Delolme C, Gautier M et al (2013a) Mineralogical study and leaching behavior of a stabilized harbor sediment with hydraulic binder. Environ Sci Pollut Res 20:51–59. doi:10.1007/s11356-012-1141-4

    Article  CAS  Google Scholar 

  • Chatain V, Blanc D, Borschneck D, Delolme C (2013b) Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling. Environ Sci Pollut Res 20:66–74. doi:10.1007/s11356-012-1233-1

    Article  CAS  Google Scholar 

  • Chatain V, Sanchez F, Bayard R, Moszkowicz P, Gourdon R (2005) Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil. J Hazard Mater 122:119–128

    Article  CAS  Google Scholar 

  • Chen Q, Tyrer M, Hills CD, Yang X, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag 29:390–403

    Article  CAS  Google Scholar 

  • Coussy S, Benzaazoua M, Blanc D, Moszkowicz P, Bussière B (2012) Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens. J Environ Manag 93:10–21

    Article  CAS  Google Scholar 

  • Couvidat J. (2015) Gestion d’un sédiment de dragage marin contaminé : caractérisation de la réactivité biogéochimique, valorisation en mortier et évaluation environnementale. Université de Lyon. INSA de Lyon,

  • Couvidat J, Benzaazoua M, Chatain V, Zhang F, Bouzahzah H (2015) An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments. Environ Sci Pollut Res 22:10943–10955. doi:10.1007/s11356-015-4323-z

    Article  CAS  Google Scholar 

  • Couvidat J, Benzaazoua M, Chatain V, Bouamrane A, Bouzahzah H (2016) Feasibility of the reuse of total and processed contaminated marine sediments as fine aggregates in cemented mortars. Constr Build Mater 112:892–902. doi:10.1016/j.conbuildmat.2016.02.186

    Article  Google Scholar 

  • Cruz R, Méndez BA, Monroy M, González I (2001) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640

    Article  CAS  Google Scholar 

  • Dalton JL, Gardner KH, Seager TP, Weimer ML, Spear JC, Magee BJ (2004) Properties of Portland cement made from contaminated sediments. Resour Conserv Recycl 41:227–241

    Article  Google Scholar 

  • Durand C, Ruban V, Amblès A (2005) Characterisation of complex organic matter present in contaminated sediments from water retention ponds. J Anal Appl Pyrolysis 73:17–28

    Article  CAS  Google Scholar 

  • Fernández-Carrasco L, Torrens-Martín D, Morales LM, Martínez-Ramírez S. Infrared spectroscopy in the analysis of building and construction materials. INTECH Open Access Publisher 2012

  • French Official Journal. (2006) Arrêté du 09/08/06 relatif aux niveaux à prendre en compte lors d’une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d’eau ou canaux publié au JORF n°222 du 24 septembre 2006 page 14082 texte n°15

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gardner KH, Tsiatsios CJ, Melton J, Seager TP (2007) Leaching behavior of estuarine sediments and cement-stabilized sediments in upland management environments. Waste Manag 27:1648–1654

    Article  Google Scholar 

  • Hamer K, Karius V (2002) Brick production with dredged harbour sediments. An industrial-scale experiment. Waste Manag 22:521–530

    Article  CAS  Google Scholar 

  • Kundu S, Gupta A (2008) Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J Hazard Mater 153:434–443

    Article  CAS  Google Scholar 

  • Lafhaj Z, Samara M, Agostini F, Boucard L, Skoczylas F, Depelsenaire G (2008) Polluted river sediments from the North region of France: treatment with Novosol® process and valorization in clay bricks. Constr Build Mater 22:755–762

    Article  Google Scholar 

  • Le Guyader C. (2013) Enquête “Dragage 2010”—synthèse des données. In: CETMEF, editor. CETMEF, Margny Lès Compiègne, pp. 36

  • Li XD, Poon CS, Sun H, Lo IMC, Kirk DW (2001) Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J Hazard Mater 82:215–230

    Article  Google Scholar 

  • Limeira J, Agullo L, Etxeberria M (2010) Dredged marine sand in concrete: an experimental section of a harbor pavement. Constr Build Mater 24:863–870

    Article  Google Scholar 

  • Limeira J, Etxeberria M, Agulló L, Molina D (2011) Mechanical and durability properties of concrete made with dredged marine sand. Constr Build Mater 25:4165–4174

    Article  Google Scholar 

  • Lions J, Guérin V, Bataillard P, van der Lee J, Laboudigue A (2010) Metal availability in a highly contaminated, dredged-sediment disposal site: Field measurements and geochemical modeling. Environ Pollut 158:2857–2864

    Article  CAS  Google Scholar 

  • Lions J, van der Lee J, Guérin V, Bataillard P, Laboudigue A (2007) Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: Experiments and modelling. J Soils Sediments 7:207–215

    Article  CAS  Google Scholar 

  • Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater 137:267–276

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Geret F, Roméo M, Hurel C, Marmier N (2012) Ex situ remediation of contaminated sediments using mineral additives: assessment of pollutant bioavailability with the Microtox solid phase test. Chemosphere 86:1112–1116

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F, François-Carcaillet F, Rosenberg R (2005) Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. J Exp Mar Biol Ecol 315:187–209

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  Google Scholar 

  • OSPAR (2009) OSPAR guidelines for the management of dredged material. In: Commission O, editor. 2009/4

  • Othmani MA, Souissi F, Benzaazoua M, Bouzahzah H, Bussiere B, Mansouri A (2013) The geochemical behaviour of mine tailings from the Touiref Pb–Zn District in Tunisia in weathering cells leaching tests. Mine Water Environ 32:28–41

    Article  CAS  Google Scholar 

  • Paria S, Yuet PK (2006) Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environ Rev 14:217–255

    Article  CAS  Google Scholar 

  • Peyronnard O, Benzaazoua M, Blanc D, Moszkowicz P (2009) Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis: part I: experimental study. Cem Concr Res 39:600–609

    Article  CAS  Google Scholar 

  • Rajasekaran G (2005) Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. Ocean Eng 32:1133–1159

    Article  Google Scholar 

  • Raudsepp M, Pani E. (2003) Application of Rietveld analysis to environmental mineralogy. Mineralogical Association of Canada Short Course 31 (Chapter 8) 3: 165–180

  • Rekik B, Boutouil M (2009) Geotechnical properties of dredged marine sediments treated at high water/cement ratio. Geo-Mar Lett 29:171–179

    Article  CAS  Google Scholar 

  • Rozière E, Samara M, Loukili A, Damidot D (2015) Valorisation of sediments in self-consolidating concrete: mix-design and microstructure. Constr Build Mater 81:1–10. doi:10.1016/j.conbuildmat.2015.01.080

    Article  Google Scholar 

  • Samara M, Lafhaj Z, Chapiseau C (2009) Valorization of stabilized river sediments in fired clay bricks: factory scale experiment. J Hazard Mater 163:701–710

    Article  CAS  Google Scholar 

  • Sha W, O’Neill EA, Guo Z (1999) Differential scanning calorimetry study of ordinary Portland cement. Cem Concr Res 29:1487–1489

    Article  CAS  Google Scholar 

  • Shi C. (2004) Hydraulic cement systems for stabilization/solidification. Stabilization and solidification of hazardous, radioactive, and mixed wastes. Editado por RD Spence y C. Shi: 49–77

  • Van Hullebusch ED, Lens PN, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Bio/Technol 4:185–212

    Article  Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M, Aubertin M. Assessment of interpretation methods for kinetic tests performed on tailings having a low acid generating potential. Proceedings of the 8th ICARD. Skelleftea, Sweden, 2009

  • Wang L, Tsang DCW, Poon C-S (2015) Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere 122:257–264

    Article  CAS  Google Scholar 

  • WHO. (2011) Guidelines for drinking-water quality—4th edition. WHO chronicle. 38. World Health Organization, Geneva, Switzerland, pp. 541

  • Xu Y, Yan C, Xu B, Ruan X, Wei Z (2014) The use of urban river sediments as a primary raw material in the production of highly insulating brick. Ceram Int 40:8833–8840

    Article  CAS  Google Scholar 

  • Yan DYS, Tang IY, Lo IMC (2014) Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Constr Build Mater 64:201–207

    Article  Google Scholar 

  • Young RA. (1993) The Rietveld method. NYC, NY, USA: Oxford University Press

  • Zentar R, Wang D, Abriak NE, Benzerzour M, Chen W (2012) Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments. Constr Build Mater 35:856–863

    Article  Google Scholar 

  • Zoubeir L, Adeline S, Laurent CS, Yoann C, Truc HT, Benoît LG et al (2007) The use of the Novosol process for the treatment of polluted marine sediment. J Hazard Mater 148:606–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was supported by the Region Rhône-Alpes with a CMIRA grant and by the University of Lyon-Saint-Étienne through financial travel support for the Ph.D. applicant. The authors are grateful to the Research and Service Unit in Mineral Technology (URSTM), University of Quebec in Abitibi-Temiscamingue (UQAT) for their experimental support. The authors also acknowledge the EEDEMS platform (French research network on waste and polluted materials management) for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Chatain.

Ethics declarations

Conflicts of interest

The authors declare that they have is no conflict of interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couvidat, J., Benzaazoua, M., Chatain, V. et al. Environmental evaluation of dredged sediment submitted to a solidification stabilization process using hydraulic binders. Environ Sci Pollut Res 23, 17142–17157 (2016). https://doi.org/10.1007/s11356-016-6869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6869-9

Keywords

Navigation