Skip to main content

Advertisement

Log in

Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?

  • Recent sediments: environmental chemistry, ecotoxicology and engineering
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Significant knowledge gaps exist regarding the fate and transport of persistent organic pollutants like dichlorodiphenyltrichloroethane (DDT) in tropical environments. In Brazil, indoor residual spraying with DDT to combat malaria and leishmaniasis began in the 1950s and was banned in 1998. Nonetheless, high concentrations of DDT and its metabolites were recently detected in human breast milk in the community of Lake Puruzinho in the Brazilian Amazon. In this work, we couple analysis of soils and sediments from 2005 to 2014 at Puruzinho with a novel dynamic floodplain model to investigate the movement and distribution of DDT and its transformation products (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) and implications for human exposure. The model results are in good agreement with the accumulation pattern observed in the measurements, in which DDT, DDE, and DDD (collectively, DDX) accumulate primarily in upland soils and sediments. However, a significant increase was observed in DDX concentrations in soil samples from 2005 to 2014, coupled with a decrease of DDT/DDE ratios, which do not agree with model results assuming a post-ban regime. These observations strongly suggest recent use. We used the model to investigate possible re-emissions after the ban through two scenarios: one assuming DDT use for IRS and the other assuming use against termites and leishmaniasis. Median DDX concentrations and p,p′-DDT/p,p′-DDE ratios from both of these scenarios agreed with measurements in soils, suggesting that the soil parameterization in our model was appropriate. Measured DDX concentrations in sediments were between the two re-emission scenarios. Therefore, both soil and sediment comparisons suggest re-emissions indeed occurred between 2005 and 2014, but additional measurements would be needed to better understand the actual re-emission patterns. Monte Carlo analysis revealed model predictions for sediments were very sensitive to highly uncertain parameters associated with DDT degradation and partitioning. With this model as a tool for understanding inter-media cycling, additional research to refine these parameters would improve our understanding of DDX fate and transport in tropical sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. N Z J Agric Res 40:269–282. doi:10.1080/00288233.1997.9513247

    Article  CAS  Google Scholar 

  • Alcântara E, Novo E, Stech J, Lorenzzetti J, Barbosa C, Assireu A, Souza A (2010) A contribution to understanding the turbidity behaviour in an Amazon floodplain. Hydrol Earth Syst Sci 14:351–364. doi:10.5194/hess-14-351-2010

    Article  Google Scholar 

  • Alegria H, Bidleman TF, Figueroa MS (2006) Organochlorine pesticides in the ambient air of Chiapas, Mexico. Environ Pollut 140:483–491. doi:10.1016/j.envpol.2005.08.007

    Article  CAS  Google Scholar 

  • Almeida R (2006) Geostatistic analysis of mercury concentrations in Puruzinho Lake-Western Amazon. Dissertation, Universidade Federal de Rondônia (in Portuguese)

  • Almeida FV, Centeno AJ, Bisinoti MC, Jardim WF (2007) Persistent toxic substances in Brazil. Química Nov. 30:1976–1985. (in Portuguese)

  • Artaxo P, Gerab F, Yamasoe M (1998) Long term atmospheric aerosol characterization in the Amazon Basin. In: Wasserman J, Silva-Filho E, Villas-Boas R (eds) Environmental geochemistry in the tropics, vol 72. Lecture Notes in Earth Sciences. Springer Berlin Heidelberg, pp 247–272. doi:10.1007/BFb0010918

  • Artaxo P, Martins JV, Yamasoe, MA, Procópio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AM (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res Atmos 107:LBA 49-1-LBA 49–14. doi:10.1029/2001JD000666

  • ASTDR (2002) Toxicological profile for DDT, DDE, DDD. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Azeredo A (2007) Organochlorine pesticides and PAHs: A study of two groups of organic pollutants. Dissertation, Universidade Federal do Rio de Janeiro (in Portuguese)

  • Azeredo A, Torres JPM, de Freitas Fonseca M, Britto JL, Bastos WR, Azevedo e Silva CE, Cavalcanti G, Meire RO et al. (2008) DDT and its metabolites in breast milk from the Madeira River basin in the Amazon, Brazil. Chemosphere 73:S246-S251. doi:10.1016/j.chemosphere.2007.04.090

  • Azevedo e Silva CE (2011) Study of the biomagnification of mercury in fish from Puruiznho Lake (AM) through the use of carbon and nitrogen stable isotopes. Dissertation, Universidade Federal do Rio de Janeiro (in Portuguese)

  • Bahm K, Khalil MAK (2004) A new model of tropospheric hydroxyl radical concentrations. Chemosphere 54:143–166. doi:10.1016/j.chemosphere.2003.08.006

    Article  CAS  Google Scholar 

  • Barra R, Colombo JC, Eguren G, et al (2006) Persistent Organic Pollutants (POPs) in Eastern and Western South American Countries. In: Ware DGW, Nigg DHN, Doerge DDR (eds) Reviews of Environmental Contamination and Toxicology. Springer New York, pp 1–33. doi:10.1007/0-387-30638-2_1

  • Becker L, Scheringer M, Schenker U, Hungerbühler K (2011) Assessment of the environmental persistence and long-range transport of endosulfan. Environ Pollut 159:1737–1743. doi:10.1016/j.envpol.2011.02.012

    Article  CAS  Google Scholar 

  • Boethling RS, Howard PH, Beauman JA, Larosch ME (1995) Factors for intermedia extrapolation in biodegradability assessment. Chemosphere 30:741–752. doi:10.1016/0045-6535(94)00439-2

    Article  CAS  Google Scholar 

  • Bogdal C (2012) Report on passive air sampling under the global monitoring plan for persistent organic pollutants—GMP projects 2010–2011. United Nations Environment Programme, Division of Technology, Industry, and Economics

  • Bogdal C, Schmid P, Kohler M, Müller CE, Iozza S, Bucheli TD, Scheringer M, Hungerbühler K (2008) Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in lake Thun, Switzerland: lessons from the past and evaluation of the present. Environ Sci Technol 42:6817–6822. doi:10.1021/es800964z

  • Bogdal C, Scheringer M, Abad E, Abalos M, van Bavel B, Hagberg J, Fiedler H (2013) Worldwide distribution of persistent organic pollutants in air, including results of air monitoring by passive air sampling in five continents. TrAC Trends Anal Chem 46:150–161. doi:10.1016/j.trac.2012.05.011

    Article  CAS  Google Scholar 

  • Bornman MS, Barnhoorn IEJ, Genthe B (2010) DDT for malaria control: effects in indicators and health risk. Water Research Comission, Report No. 1674/1/09

  • Bouwman H, Kylin H (2009) Malaria control insecticide residues in breast milk: the need to consider infant health risks. Environ Health Perspect 117:1477–1480. doi:10.1289/ehp.0900605

    Article  CAS  Google Scholar 

  • Bouwman H, van den Berg H, Kylin H (2011) DDT and malaria prevention: addressing the paradox. Environ Health Perspect 119:744–747. doi:10.1289/ehp.1002127

    Article  CAS  Google Scholar 

  • Buser AM, MacLeod M, Scheringer M, Mackay D, Bonnell M, Russell MH, DePinto JV, Hungerbühler K (2012) Good modeling practice guidelines for applying multimedia models in chemical assessments. Integr Environ Assess Manag 8:703–708. doi:10.1002/ieam.1299

  • Camenzuli L, Scheringer M, Gaus C, Ng CA, Hungerbühler K (2012) Describing the environmental fate of diuron in a tropical river catchment. Sci Total Environ 440:178–185. doi:10.1016/j.scitotenv.2012.07.037

    Article  CAS  Google Scholar 

  • Eggen T, Majcherczyk A (2006) Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment. Chemosphere 62:1116–1125. doi:10.1016/j.chemosphere.2005.05.044

    Article  CAS  Google Scholar 

  • Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Bornman MS, Bouwman H, Chen A, Cohn BA, et al. (2009) The pine river statement: human health consequences of DDT use. Environ Health Persp 117:1359–1367. doi:10.1289/ehp.11748

  • FAO, WHO (2000) Pesticide residues in food. Report of the Joint Meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core Assessment Group. Food and Agriculture Organization Plant Production and Protection Paper 163. http://www.who.int/foodsafety/publications/jmpr-reports/en/. Accessed January 20 2015

  • Fenner K, Scheringer M, Hungerbühler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34:3809–3817. doi:10.1021/es0000347

    Article  CAS  Google Scholar 

  • Ferreira CP, De-Oliveira ACAX, Paumgartten FJR (2011) Serum concentrations of DDT and DDE among malaria control workers in the amazon region. J Occup Health 53:115–122. doi:10.1539/joh.O10026

    Article  CAS  Google Scholar 

  • Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediation J 5:225–246. doi:10.1080/20018891079302

    Article  CAS  Google Scholar 

  • Ge J, Woodward LA, Li QX, Wang J (2013) Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll, North Pacific Ocean. Sci Total Environ 452–453:421–426. doi:10.1016/j.scitotenv.2013.03.015

    Article  Google Scholar 

  • GEF (2006) Development of a national implementation plan in Brazil as a first step to implement the Stockholm Convention on persistent organic pollutants (POPs). Global Environmental Facility United Nations Environmental Program. http://www.thegef.org/gef/project_detail?projID=2096. Accessed 10 September 2012

  • Harner T, Wideman JL, Jantunen LMM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106:323–332. doi:10.1016/S0269-7491(99)00110-4

    Article  CAS  Google Scholar 

  • Herrera-Portugal C, Ochoa H, Franco-Sánchez G, Yáñez L, Díaz-Barriga F (2005) Environmental pathways of exposure to DDT for children living in a malarious area of Chiapas, Mexico. Environ Res 99:158–163. doi:10.1016/j.envres.2005.03.010

    Article  CAS  Google Scholar 

  • Hitch R, Day H (1992) Unusual persistence of DDT in some Western USA soils. Bull Environ Contam Toxicol 48: 259–264. doi:10.1007/BF00194381

  • Hollander A, Huijbregts MAJ, Ragas AMJ, Meent D (2006) BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments. Hydrobiologia 565:21–38. doi:10.1007/s10750-005-1903-9

    Article  CAS  Google Scholar 

  • Humphries MS (2013) DDT residue contamination in sediments from lake Sibaya in northern KwaZulu-Natal, South Africa: implications for conservation in a world heritage site. Chemosphere 93:1494–1499. doi:10.1016/j.chemosphere.2013.07.047

    Article  CAS  Google Scholar 

  • Hussain A, Maqbool U, Asi M (1994a) Studies on dissipation and degradation of 14C-DDT and 14C-DDE in Pakistani soils under field conditions. J Environ Sci Health Part B 29:1-15. doi:10.1080/03601239409372853

  • Hussain A, Maqbool U, Asi M (1994b) Studies on the dissipation of 14C-DDT from water and solid surfaces. J Environ Sci Health B 29:177–184. doi:10.1080/03601239409372870

    Article  Google Scholar 

  • Hussain A, Tirmazi SH, Maqbool U, Asi M, Chaughtai FA (1994c) Studies of the effects of temperatures and solar radiation on volatilization, mineralization and binding of 14C-DDT in soil under laboratory conditions. J Environ Sci Health B 29:141–151. doi:10.1080/03601239409372866

    Article  Google Scholar 

  • INMET (2012) Climatological Normals of Brazil 1961-1990. http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas. Accessed 10 October 2013 (in Portuguese)

  • INMET (2015) Automatic stations. http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_auto_graf. Accessed 1 February 2014 (in Portuguese)

  • Kadir HA (1988) Dissipation and degradation of 14C-DDT in Malaysian soils. International Atomic Energy Agency (IAEA). Technical Document 476:41–45

  • Kenneth DR (2003) What do we know about the fate of pesticides in tropical ecosystems? In: Environmental fate and effects of pesticides, vol 853. ACS Symposium Series, vol 853. American Chemical Society, pp 96–123. doi:10.1021/bk-2003-0853.ch006

  • Kuo-Ching Ma DM, Sum CL, Wan YS (2006) Insecticides. In: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, second edition. CRC Press, pp 3711–4022. doi:10.1201/9781420044393.ch18

  • Lalah JO, Acholla FV, Wandiga SO (1994) Fate of 14C-p,p’-DDT in Kenyan tropical soils. J Environ Sci Health B 29:57–64. doi:10.1080/03601239409372858

    Article  Google Scholar 

  • Lawrence Boul H (1996) Effect of soil moisture on the fate of radiolabelled DDT and DDE in vitro. Chemosphere 32:855–866. doi:10.1016/0045-6535(96)00018-5

    Article  Google Scholar 

  • Linders J, Mensink H, Stephenson G, Wauchope D, Racke K (2000) Foliar interception and retention values after pesticide application. A proposal for standardized values for environmental risk assessment. Pure Appl Chem 72:2199–2218

    Article  CAS  Google Scholar 

  • Loiola C, da Silva C, Tauil P (2002) Malaria control in Brazil: 1965 to 2001. Rev Panam Salud Publica 11:235–244

    Article  Google Scholar 

  • Longnecker MP (2005) Invited commentary: why DDT matters now. Am J Epidemiol 162:726–728. doi:10.1093/aje/kwi277

    Article  Google Scholar 

  • Mackay D (2001) Multimedia environmental models: the fugacity approach, second edition. CRC Press

  • MacLeod M, Fraser AJ, Mackay D (2002) Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem 21:700–709. doi:10.1002/etc.5620210403

    Article  CAS  Google Scholar 

  • Mariën K, Laflamme DM (1995) Determination of a tolerable daily intake of DDT for consumers of DDT contaminated fish from the lower Yakima River, Washington. Risk Anal 15:709–717. doi:10.1111/j.1539-6924.1995.tb01343.x

    Article  Google Scholar 

  • Martínez F-B, Trejo-Acevedo A, Betanzos A, Espinosa-Reyes G, Alegría-Torres J, Maldonado I (2012) Assessment of DDT and DDE levels in soil, dust, and blood samples from Chihuahua, Mexico. Arch Environ Contam Toxicol 62:351–358. doi:10.1007/s00244-011-9700-0

    Article  Google Scholar 

  • Martínez-Salinas R, Díaz-Barriga F, Batres-Esquivel L, Pérez-Maldonado I (2011) Assessment of the levels of DDT and its metabolites in soil and dust samples from Chiapas, Mexico. Bull Environ Contam Toxicol 86:33–37. doi:10.1007/s00128-010-0174-y

    Article  Google Scholar 

  • Meire RO, Lee SC, Yao Y, Targino AC, Torres JPM, Harner T (2012) Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmos Environ 59:108–116. doi:10.1016/j.atmosenv.2012.05.018

    Article  CAS  Google Scholar 

  • MMA (2015) Brazilian national implementation plan: Stockholm convention. Brazilian Ministry of Environment, Brasília (in Portuguese)

  • Moreira-Turcq P, Jouanneau JM, Turcq B, Seyler P, Weber O, Guyot JL (2004) Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeogr Palaeoclimatol Palaeoecol 214:27–40. doi:10.1016/j.palaeo.2004.06.013

    Article  Google Scholar 

  • Nowell LH (1999) Analysis of key topics? Sources, behavior, and transport. In: Pesticides in Stream Sediment and Aquatic Biota. CRC Press. doi:10.1201/9781439822708.ch5

  • Oliveira RC, Dorea JG, Bernardi JV, Bastos WR, Almeida R, Manzatto AG (2010) Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury. Ann Hum Biol 37:629–642. doi:10.3109/03014460903525177

    Article  Google Scholar 

  • Oliveira-Ferreira J, Lacerda M, Brasil P, Ladislau J, Tauil P, Daniel-Ribeiro C (2010) Malaria in Brazil: an overview. Malar J 9:115

    Article  Google Scholar 

  • Pereira WE, Domagalski JL, Hostettler FD, Brown LR, Rapp JB (1996) Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California. Environ Toxicol Chem 15:172–180. doi:10.1002/etc.5620150216

    Article  CAS  Google Scholar 

  • Pérez-Maldonado IN et al (2010) Assessment of DDT levels in selected environmental media and biological samples from Mexico and Central America. Chemosphere 78:1244–1249. doi:10.1016/j.chemosphere.2009.12.040

    Article  Google Scholar 

  • Peters AJ, Jones KC, Flower RJ, Appleby PG, Ramdani M, Kraïem MM, Fathi AA (2001) Recent environmental change in North African wetland lakes: a baseline study of organochlorine contaminant residues in sediments from nine sites in the CASSARINA project. Aquat Ecol 35:449–459. doi:10.1023/A:1011980226851

    Article  CAS  Google Scholar 

  • Pozo K, Harner T, Lee SC, Wania F, Muir DCG, Jones KC (2008) Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ Sci Technol 43:796–803. doi:10.1021/es802106a

    Article  Google Scholar 

  • Qiu X, Zhu T, Li J, Pan H, Li Q, Miao G, Gong J (2004) Organochlorine pesticides in the air around the Taihu Lake, China. Environ Sci Technol 38:1368–1374. doi:10.1021/es035052d

    Article  CAS  Google Scholar 

  • Ricking M, Schwarzbauer J (2012) DDT isomers and metabolites in the environment: an overview. Environ Chem Lett 10:317–323. doi:10.1007/s10311-012-0358-2

    Article  CAS  Google Scholar 

  • Ritter R, Scheringer M, MacLeod M, Hungerbuhler K (2011) Assessment of nonoccupational exposure to DDT in the tropics and the north: relevance of uptake via inhalation from indoor residual spraying. Environ Health Perspect 119:707–712. doi:10.1289/Ehp.1002542

    Article  CAS  Google Scholar 

  • Saldanha GC, Bastos WR, Torres JPM, Malm O (2010) DDT in fishes and soils of lakes from Brazilian Amazon: case study of Puruzinho Lake (Amazon, Brazil). J Braz Chem Soc 21:306–311

    Article  CAS  Google Scholar 

  • Samuel T, Pillai MKK (1988) Persistence and fate of 14C-p,p’-DDT in an Indian sandy loam soil under field and laboratory conditions. International Atomic Energy Agency (IAEA). Technical Document 476:27–39

  • Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79. doi:10.1016/S0141-1136(00)00260-9

    Article  CAS  Google Scholar 

  • Schenker U, Scheringer M, Hungerbühler K (2007) Including degradation products of persistent organic pollutants in a global multi-media box model. Environ Sci Poll Res Int 14:145–152. doi:10.1065/espr2007.03.398

    Article  CAS  Google Scholar 

  • Schenker U, Scheringer M, Hungerbühler K (2008) Investigating the global fate of DDT: model evaluation and estimation of future trends. Environ Sci Technol 42:1178–1184. doi:10.1021/es070870h

    Article  CAS  Google Scholar 

  • Schenker U, Scheringer M, Sohn MD, Maddalena RL, McKone TE, Hungerbühler K (2009) Using Information on uncertainty to improve environmental fate modeling: a case study on DDT. Environ Sci Technol 43:128–134. doi:10.1021/es801161x

    Article  CAS  Google Scholar 

  • Sjoeib F, Anwar E, Tungguldihardjo MS (1994) Behaviour of DDT and DDE in Indonesian tropical environments. J Environ Sci Health B 29:17–24. doi:10.1080/03601239409372854

    Article  Google Scholar 

  • Sommerfreund JK et al (2010) Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model. Ecotoxicol Environ Saf 73:222–230. doi:10.1016/j.ecoenv.2009.11.005

    Article  CAS  Google Scholar 

  • Stephens J, Maeda DN, Ngowi AV, Moshi AO, Mushy P, Mausa E (1994) Dissipation and degradation of 14C-p, p’-DDT and 14C-p,p’-DDE in Tanzanian soils under field conditions. J Environ Sci Health B 29:65–71. doi:10.1080/03601239409372859

    Article  Google Scholar 

  • Su N-Y, Ban PM, Scheffrahn RH (1999) Longevity and efficacy of pyrethroid and organophosphate termiticides in field degradation studies using miniature slabs vol 92(4):890–898. doi:10.1093/jee/92.4.890

  • SVS (2013) Epidemiological situation of malaria in Brazil, 2000 to 2011. Epidemiological Bulletin 44 (1). Health Surveillance Secretariat, Brazilian Ministry of Health. http://portalsaude.saude.gov.br/index.php/o-ministerio/principal/leia-mais-o-ministerio/197-secretaria-svs/11955-boletins-epidemiologicos-arquivos. Accessed 21 March 2015 (in Portuguese)

  • Tayaputch N (1988) Fate of 14C-DDT in Thailand under field and laboratory conditions. International Atomic Energy Agency (IAEA). Technical Document 476:63–68

  • Torres JPM, Pfeiffer WC, Markowitz S, Pause R, Malm O, Japenga J (2002) Dichlorodiphenyltrichloroethane in soil, river sediment, and fish in the Amazon in Brazil. Environ Res 88:134–139. doi:10.1006/enrs.2001.4312

    Article  CAS  Google Scholar 

  • Torres JPM et al (2009) Persistent toxic substances in the Brazilian Amazon: contamination of man and the environment. J Braz Chem Soc 20:1175–1179

    Article  CAS  Google Scholar 

  • USEPA (2014) Estimation Programs Interface SuiteTM for Microsoft (R) Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA.

  • van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117:1656–1663. doi:10.1289/ehp.0900785

    Article  Google Scholar 

  • Van Dyk JC, Bouwman H, Barnhoorn IEJ, Bornman MS (2010) DDT contamination from indoor residual spraying for malaria control. Sci Total Environ 408:2745–2752. doi:10.1016/j.scitotenv.2010.03.002

    Article  Google Scholar 

  • Vieira EDR, Torres JPM, Malm O (2001) DDT environmental persistence from its use in a vector control program: a case study. Environ Res 86:174–182. doi:10.1006/enrs.2001.4258

    Article  CAS  Google Scholar 

  • Wang F et al (2007) Organochlorine pesticides in soils under different land usage in the Taihu Lake region. Chin J Environ Sci 19:584–590. doi:10.1016/S1001

    Article  CAS  Google Scholar 

  • Wania F, Breivik K, Persson NJ, McLachlan MS (2006) CoZMo-POP 2—a fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Model Softw 21:868–884. doi:10.1016/j.envsoft.2005.04.003

    Article  Google Scholar 

  • Whelan MJ (2013) Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model. Chemosphere 91:1566–1576. doi:10.1016/j.chemosphere.2012.12.048

    Article  CAS  Google Scholar 

  • WHO (2011) DDT in indoor residual spraying: human health aspects (Environmental Health Criteria 241). World Health Organization, Switzerland

    Google Scholar 

  • WHO (2012) World malaria report. World Health Organization, Switzerland

    Google Scholar 

  • WHO (2013) WHO recommended insecticides for indoor residual spraying for malaria vectors. World Health Organization. http://www.who.int/whopes/Insecticides_IRS_Malaria_25_Oct_2013.pdf. Accessed 15 September 2013

  • Xia X, Hopke PK, Holsen TM, Crimmins BS (2011) Modeling toxaphene behavior in the Great Lakes. Sci Total Environ 409:792–799. doi:10.1016/j.scitotenv.2010.10.051

    Article  CAS  Google Scholar 

  • Xu B, Jianying G, Yongxi Z, Haibo L (1994) Behaviour of DDT in Chinese tropical soils. J Environ Sci Health B 29:37–46. doi:10.1080/03601239409372856

    Article  Google Scholar 

  • Yáñez L, Ortiz-Pérez D, Batres LE, Borja-Aburto VH, Dı́az-Barriga F (2002) Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malarious areas of Mexico. Environ Res 88:174–181. doi:10.1006/enrs.2002.4333

    Article  Google Scholar 

  • Zayed SMAD, El‐Axab AE, Soliman SM (1994a) Dissipation of DDT in natural water under field conditions. J Environ Sci Health B 29:185–188. doi:10.1080/03601239409372871

    Article  Google Scholar 

  • Zayed SMAD, Mostafa IY, El‐Arab AE (1994b) Degradation and fate of 14C-DDT and 14C-DDE in Egyptian soil. J Environ Sci Health B 29:47–56. doi:10.1080/03601239409372857

    Article  Google Scholar 

  • Zhang G, Parker A, House A, Mai B, Li X, Kang Y, Wang Z (2002) Sedimentary records of DDT and HCH in the pearl River Delta, South China. Environ Sci Technol 36:3671–3677. doi:10.1021/es0102888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Brazilian Swiss Joint Research Programme in Switzerland, and from CNPq/MCTi and FAPERJ/SECT/RJ in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla A. Ng.

Additional information

Responsible editor: Marcus Schulz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.32 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, A., Ng, C.A., Torres, J.P.M. et al. Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?. Environ Sci Pollut Res 23, 10317–10334 (2016). https://doi.org/10.1007/s11356-015-5641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5641-x

Keywords

Navigation