Skip to main content

Advertisement

Log in

Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG) is the solid waste product of phosphate fertilizer production and is characterized by high concentrations of salts, heavy metals, and certain natural radionuclides. The work reported in this paper examined the influence of PG amendment on soil physicochemical proprieties, along with its potential impact on several physiological traits of sunflower seedlings grown under controlled conditions. Sunflower seedlings were grown on agricultural soil substrates amended with PG at rates of 0, 2.5, and 5 %. The pH of the soil decreased but electrical conductivity and organic matter, calcium, phosphorus, sodium, and heavy metal contents increased in proportion to PG concentration. In contrast, no variations were observed in magnesium content and small increases were recorded in potassium content. The effects of PG on sunflower growth, leaf chlorophyll content, nutritional status, osmotic regulator content, heavy metal accumulation, and antioxidative enzymes were investigated. Concentrations of trace elements in sunflower seedlings grown in PG-amended soil were considerably lower than ranges considered phytotoxic for vascular plants. The 5 % PG dose inhibited shoot extension and accumulation of biomass and caused a decline in total protein content. However, chlorophyll, lipid peroxidation, proline and sugar contents, and activities of antioxidant enzymes such as superoxide dismutase and catalase increased. Collectively, these results strongly support the hypothesis that enzymatic antioxidation capacity is an important mechanism in tolerance of PG salinity in sunflower seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril JM, García-Tenorio R, Enamorado SM, Hurtado MD, Andreu L, Delgado A (2008) The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and Cd contents in soils and tomato fruit. Sci Total Environ 403:80–88

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ajam L, Ben Ouezdou M, Sfar Felfoul H, El Mensi R (2009) Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Constr Build Mater 23:3240–3247

    Article  Google Scholar 

  • Al-Hwaiti OM, Al-Khashman O (2014) Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health. doi:10.1007/s10653-014-9646-z

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bader B, Aissaoui F, Kmicha I, Ben Salem A, Chehab H, Gargouri K, Boujnah D, Chaieb M (2015) Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs ‘Picholine’, ‘Meski’ and ‘Ascolana’) growth and ion accumulation. Desalination. doi:10.1016/j.desal.2015.01.002

    Google Scholar 

  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhris M, Ben Abdallah F (2009) Saline water irrigation effects on antioxidant defense system and proline accumulation in leaves and roots of field-grown olive. J Agric Food Chem 57:11484–11490

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Berndt M (2005) Determination of chemical and physical soil properties. In: Margensin R, Schinner F (eds) Manual of soil analysis. Springer, Germany, pp 74–76

    Google Scholar 

  • Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240:235–251

    Article  CAS  Google Scholar 

  • Caires EF, Churka S, Garbuio FJ, Ferrari RA, Morgano MA (2006) Soybean yield and quality as a function of lime and gypsum applications. Sci Agric 63:370–379

    CAS  Google Scholar 

  • Caires EF, Garbuio FJ, Churka S, Joris HAW (2011) Use of gypsum for crop grain production under a subtropical no-till cropping system. Agric J 103:1804–1814

    CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426

    Google Scholar 

  • Chandrashekar KR, Sandhyarani S (1996) Salinity induced chemical changes in Crotalaria striata Dc. Plants. Indian J Plant Physiol 1:44–48

    CAS  Google Scholar 

  • Churka Blum S, Caires EF, Alleoni LRF (2013) Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system. J Soil Sci Plant Nutr 13:279–300

    Google Scholar 

  • Dai X, Boutton TW, Hailemichael M, Ansley RJ, Jessup KE (2006) Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna. J Environ Qual 35:1620–1628

    Article  CAS  Google Scholar 

  • Delgado A, Uceda I, Andreu L, Kassem S, Del Campillo M (2002) Fertilizer phosphorus recovery from gypsum-

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci 22:526–532

    Article  CAS  Google Scholar 

  • Ekvall L, Greger M (2003) Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environ Pollut 121:401–411

    Article  CAS  Google Scholar 

  • Elloumi N, Ben Abdallah F, Rhouman A, Ben Rwina B, Mezghani I, Boukhris M (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62

    Google Scholar 

  • Elloumi N, Zouari M, Chaari L, Jomni C, Marzouk B, Ben Abdallah F (2014a) Effects of cadmium on lipids of almond seedlings (Prunus dulcis). Bot Stud 55:61

    Article  Google Scholar 

  • Elloumi N, Zouari M, Chaari L, Jomni C, Ben Rouina B, Ben Abdallah F (2014b) Ecophysiological responses of almond (Prunus dulcis) seedlings to cadmium stress. Biologia 69:604–609

    Article  CAS  Google Scholar 

  • El-Mrabet R, Abril JM, Periáñez R, Manjón G, García-Tenorio R, Delgado A, Andreu L (2003) Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soil from south-western Spain. J Environ Qual 32:1262–1268

    Article  CAS  Google Scholar 

  • Enamorado S, Abril JM, Mas JL, Perianez R, Polvillo O, Delgado A, Quintero JM et al (2009) Transfer of Cd, Pb, Ra and U from phosphogypsum amended soils to tomato plants. Water Air Soil Pollut 203:65–77

    Article  CAS  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779–785

    Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • Fotovat A, Naidu R, Sumner ME (1997) Water:soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Aust J Soil Res 35:687–710

    Article  CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Gong B, Wen D, Vanden Langenberg K, Wei M, Yang F, Shi Q, Wang X (2013) Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hortic 157:1–12

    Article  CAS  Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML, Benavides MP (2008) Inhibition of Root Growth and Polyamine Metabolism in Sunflower (Helianthus annuus) Seedlings Under Cadmium and Copper Stress. Biol Trace Elem Res 126:246–256

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Sahin O (2007) Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol Plant 51:571–574

    Article  CAS  Google Scholar 

  • Hammas I, Horchani-Naifer K, Férid M (2013) Solubility study and valorization of phosphogypsum salt solution. Int J Miner Process 123:87–93

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Heidari M, Jamshid P (2010) Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. J Agric Biol Sci 5:39–46

    Google Scholar 

  • Howladar SM (2014) A novel Moringaoleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75

    Article  CAS  Google Scholar 

  • Hurtado MD, Enamorado SM, Andreu A, Delgado A, Abril JM (2011) Drain flow and related salt losses as affected by phosphogypsum amendment in reclaimed marsh soils from SW Spain. Geoderma 161:43–49

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1986) Trace elements in soils and plants. CRC Press Inc, Florida

    Google Scholar 

  • Kassir LN, Darwish T, Shaban A, Lartiges B, Ouaini N (2012) Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environ Monit Assess 184:4397–4412

    Article  CAS  Google Scholar 

  • KaviKishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Review: regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Khan MA, Shirazi MU, Muhammad AK, Mujtaba SM, Islam E, Mumtaz S, Shereen A, Ansari RU, Afhraf Y (2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak J Bot 41:633–638

    Google Scholar 

  • Khoudi H, Maatar Y, Brini F, Fourati A, Ammar N, Masmoudi K (2013) Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Pollut Res 20:270–280

    Article  CAS  Google Scholar 

  • Kjeldahl JZ (1883) A new method for the determination of nitrogen in organic matter. Anal Chem 22:366

    Article  Google Scholar 

  • Kolbert Z, Peto A, Lehotai N, Feigl G, Erdei L (2012) Long-term copper (Cu2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul 68:151–159

    Article  CAS  Google Scholar 

  • Kuryatnyk T, Angulski da Luz C, Ambroise J, Pera J (2008) Valorization of phosphogypsum as hydraulic binder. J Hazard Mater 160:681–687

    Article  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Lee CH, Ha BY, Lee YB, Kim PJ (2009) Effect of alkalized phosphogypsum on soil chemical and biological properties. Commun Soil Sci Plant 40:2072–2086

    Article  CAS  Google Scholar 

  • Lowry OH, Roenbrough NJ, Farr AL, Randal EJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265

    CAS  Google Scholar 

  • Mallick S, Sinam G, Mishra RK, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • May DA, Mortvedt JE (1986) Crop response to soil applications of phosphogypsum. J Environ Qual 15:78–81

    Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owes HS (1950) Determination of starch and amylase in vegetables. Application to peas. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Pb, Cr, Co and Mn from soils and sewage sludges. J Sci Food Agric 36:794–798

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopamonnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Munis MFH, Tu L, Ziaf K, Tan J, Deng F, Zhang X (2010) Critical osmotic, ionic and physiological indicators of salinity tolerance in cotton (Gossypium hirsutum L.) for cultivar selection. Pak J Bot 42:1685–1694

    Google Scholar 

  • Naidu R, Oliver D, McConnell S (2003) Heavy metal phytotoxicity in soils. In: Langley A, Gilbey M, Kennedy B (eds), Proceedings of the Fifth National Workshop on the Assessment of Site Contamination National Environment Protection Council Service Corporation, Adelaide S. A

  • Nayak AK, Mishra VK, Sharma DK, Jha SK, Singh CS, Shahabuddin M, Shahid M (2013) Efficiency of phosphogypsum and mined gypsum in reclamation and productivity of rice-wheat cropping system in sodic soil. Commun Soil Sci Plan 44:909–921. doi:10.1080/00103624.2012.747601

    Article  CAS  Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguébel JP, Schmülling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48

    Article  CAS  Google Scholar 

  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57:26–33

    CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL et al (eds) Methods of Soil Analysis, Part 2, Agron Monogr 9, 2nd edn. ASA and ASSA, Madison, pp 403–430

    Google Scholar 

  • Ostos JC, Lopez-Garrido R, Murillo JM, Lopez R (2008) Substitution of peat for municipal solid waste and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresour Technol 99:1793–1800

    Article  CAS  Google Scholar 

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 89:188–198

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  Google Scholar 

  • Shamsul H, Gulshan K, Arif SW, Mohammed Nasser A, Aqil A (2014) Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. Int J Biol Macromol 64:130–136

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidise isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  Google Scholar 

  • Silva JDC, Tamara TB, Leal AASF, Araujoa RM, Gomes RLF, Melo WJ, Singh RP (2010) Effect of different tannery sludge compost amendment rates on growth, biomass accumulation and yield responses of Capsicum plants. Waste Manag 30:1976–1980

    Article  Google Scholar 

  • Tang J, Camberato JJ, Yu X, Luc N, Bian S, Jiang Y (2013) Growth response, carbohydrate and ion accumulation of diverse perennial ryegrass accessions to increasing salinity. Sci Hortic 154:73–81

    Article  CAS  Google Scholar 

  • Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386

    Article  CAS  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2001) Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–123

    Article  CAS  Google Scholar 

  • Vyshpolsky F, Mukhamedjanov K, Bekbaev U, Ibatullin S, Yuldashev T, Noble AD, Mirzabaev A, Aw-Hassan A, Qadir M (2010) Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement. Agric Water Manag 97:1277–1286

    Article  Google Scholar 

  • Wojcik M, Tukiendore A (2005) Cd uptake, localization and detoxification in Zea mays. Biol Plant 49:237–244

    Article  CAS  Google Scholar 

  • Yang L, Yan Y, Hu Z (2013) Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Constr Build Mater 44:600–606

    Article  Google Scholar 

  • Zhang X, Miller W, Nearing M, Norton LD (1998) Effects of surface treatment on surface sealing, runoff, and in terril erosion. Trans ASAE 41(4):989–994

    Article  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zhou J, Gao H, Shu Z, Wang Y, Yan C (2012) Utilization of waste phosphogypsum to prepare non-fired bricks by a novel Hydration–Recrystallization process. Constr Build Mater 34:114–119

    Article  Google Scholar 

  • Zhu JK (2001) Plants salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Elloumi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elloumi, N., Zouari, M., Chaari, L. et al. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res 22, 14829–14840 (2015). https://doi.org/10.1007/s11356-015-4716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4716-z

Keywords

Navigation