Skip to main content
Log in

Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals’ toxic effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angle JS, Chaney RL (1989) Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Appl Environ Microbiol 55:2101–2104

    CAS  Google Scholar 

  • ATSDR (2005) Toxicological profile for zinc. Agency for Toxic Substances and Disease Registry (ATSDR). U.S. Department of Health and Human Services – Public Health Service

  • ATSDR (2007) Toxicological profile for lead. Agency for Toxic Substances and Disease Registry (ATSDR). U.S. Department of Health and Human Services – Public Health Service

  • ATSDR (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (ATSDR). U.S. Department of Health and Human Services – Public Health Service

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  Google Scholar 

  • Bleackley MR, MacGillivray RTA (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24:785–809

    Article  CAS  Google Scholar 

  • Bussche JV, Soares EV (2011) Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:679–687

    Article  Google Scholar 

  • Chan GF, Gan HM, Ling HL, Rashida NAA (2012) Genome sequence of Pichia kudriavzevii M12, a potential producer of bioethanol and phytase. Eukaryot Cell 11:1300–1301

    Article  CAS  Google Scholar 

  • Chen C, Wang JL (2007) Response of Saccharomyces cerevisiae to lead ion stress. Appl Microbiol Biotechnol 74:683–687

    Article  CAS  Google Scholar 

  • Costa-de-Oliveira S, Silva AP, Miranda IM, Salvador A, Azevedo MM, Munro CA, Rodrigues AG, Pina-Vaz C (2013) Determination of chitin content in fungal cell wall: an alternative flow cytometric method. Cytom Part A 83A:324–328

    Article  CAS  Google Scholar 

  • Cui QH, Tang CC (2000) Effects of lead and selenium on yeast (Saccharomyces cerevisiae) telomere. Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 35:1663–1671

    Article  Google Scholar 

  • Cyert MS, Philpott CC (2013) Regulation of cation balance in Saccharomyces cerevisiae. Genetics 193:677–713

    Article  CAS  Google Scholar 

  • Davey HM, Hexley P (2011) Red but not dead? membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171

    Article  CAS  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  Google Scholar 

  • Delisle AL, Phaff HJ (1961) The release of nitrogenous substances by brewer’s yeast. Proc Am Soc Brew Chem:103–118

  • Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK (2011) Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 102:5968–5975

    Article  CAS  Google Scholar 

  • Eisenberg T, Carmona-Gutierrez D, Buttner S, Tavernarakis N, Madeo F (2010) Necrosis in yeast. Apoptosis 15:257–268

    Article  Google Scholar 

  • Fiolka MJ, Grzywnowicz K, Chlebiej K, Szczuka E, Mendyk E, Keller R, Rzymowska J (2012) Anti-Candida albicans action of the glyco-protein complex purified from metabolites of gut bacterium Raoultella ornithinolytica isolated from earthworms Dendrobaena veneta. J Appl Microbiol 113:1106–1119

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Fungi and yeast for metal accumulation. In: Ehrlich HL, Brierly CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275

    Google Scholar 

  • Gardarin A, Chedin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048

    Article  CAS  Google Scholar 

  • Gitan RS, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278:39558–39564

    Article  CAS  Google Scholar 

  • Harrison JC, Zyla TR, Bardes ESG, Lew DJ (2004) Stress-specific activation mechanisms for the “cell integrity” MAPK pathway. J Biol Chem 279:2616–2622

    Article  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    CAS  Google Scholar 

  • Huebert DB, Shay JM (1992) The effect of EDTA on cadmium and zinc uptake and toxicity in Lemna trisulca L. Arch Environ Contam Toxicol 22:313–318

    Article  CAS  Google Scholar 

  • Ilyas S, Rehman A, Varela AC, Sheehan D (2014) Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate. PLoS One 9:14

    Article  Google Scholar 

  • Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31

    Article  CAS  Google Scholar 

  • MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845–2855

    Article  CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106:1792–1804

    Article  CAS  Google Scholar 

  • Mapolelo M, Torto N (2004) Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64:39–47

    Article  CAS  Google Scholar 

  • Millard PJ, Roth BL, Thi HPT, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905

    CAS  Google Scholar 

  • Mirisola MG, Braun RJ, Petranovic D (2014) Approaches to study yeast cell aging and death. FEMS Yeast Res 14:109–118

    Article  CAS  Google Scholar 

  • Mowll JL, Gadd GM (1983) Zinc uptake and toxicity in the yeasts Sporobolomyces roseus and Saccharomyces cerevisiae. J Gen Microbiol 129:3421–3425

    CAS  Google Scholar 

  • Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A (2013) Cadmium-induced pathologies: where is the oxidative balance lost (or not)? Int J Mol Sci 14:6116–6143

    Article  CAS  Google Scholar 

  • Naja GM, Volesky B (2010) Toxicity and sources of Pb, Cd, Hg, Cr, as and radionuclides in the environment. In: Wang LK, Chen JP, Hung YT, Shammas NK (eds) Handbook on heavy metals in the environment. Taylor & Francis and CRC Press, Boca Raton, pp 13–61

    Google Scholar 

  • Nargund AM, Avery SV, Houghton JE (2008) Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis 13:811–821

    Article  CAS  Google Scholar 

  • Ohsumi Y, Kitamoto K, Anraku Y (1988) Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol 170:2676–2682

    CAS  Google Scholar 

  • Parisi-Duchene E, Reibel C, Grawey I, Heller R, Mazurier I, de Briel DA, Moskovtchenko P (2006) Rapid antifungal susceptibility testing of fluconazole and amphotericin B by flow cytometry using FUN-1: a preliminary study. J Mycol Med 16:126–133

    Article  Google Scholar 

  • Pereira GVD, Miguel M, Ramos CL, Schwan RF (2012) Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol 78:5395–5405

    Article  CAS  Google Scholar 

  • Perez RR, Sousa CA, Vankeersbilck T, Machado MD, Soares EV (2013) Evaluation of the role of glutathione in the lead-induced toxicity in Saccharomyces cerevisiae. Curr Microbiol 67:300–305

    Article  CAS  Google Scholar 

  • Pringle JR (1991) Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:732–735

    Article  CAS  Google Scholar 

  • Romero MC, Gatti ME, Cordoba S, Cazau MC, Arambarri AM (2000) Physiological and morphological characteristics of yeasts isolated from waste oil effluents. World J Microbiol Biotechnol 16:683–686

    Article  Google Scholar 

  • Rossi E (2008) Low level environmental lead exposure—a continuing challenge. Clin Biochem Rev 29:63–70

    Google Scholar 

  • Rueda C, Cuenca-Estrella M, Zaragoza O (2014) Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Antimicrob Agents Chemother 58:1071–1083

    Article  Google Scholar 

  • Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC (2014) Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett 588:3202–3212

    Article  CAS  Google Scholar 

  • Soares EV, Hebbelinck K, Soares HMVM (2003) Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can J Microbiol 49:336–343

    Article  CAS  Google Scholar 

  • Soares EV, Soares H (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res 19:1066–1083

    Article  Google Scholar 

  • Soares EV, Soares HMVM (2013) Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 97:6667–6675

    Article  CAS  Google Scholar 

  • Soares H, Pinho SC, Barros M (1999a) Influence of n-substituted aminosulfonic acids with a morpholinic ring pH buffers on the redox processes of copper or zinc ions: a contribution to speciation studies. Electroanalysis 11:1312–1317

    Article  CAS  Google Scholar 

  • Soares HMVM, Conde PCFL, Almeida AAN, Vasconcelos MTSD (1999b) Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques. Anal Chim Acta 394:325–335

    Article  CAS  Google Scholar 

  • Sousa CA, Hanselaer S, Soares EV (2015) ABCC subfamily vacuolar transporters are involved in Pb (lead) detoxification in Saccharomyces cerevisiae. Appl Biochem Biotechnol 175:65–74

    Article  CAS  Google Scholar 

  • Sousa CA, Perez RR, Soares EV (2014) Saccharomyces cerevisiae mutants affected in vacuole assembly or vacuolar H+-ATPase are hypersensitive to lead (Pb) toxicity. Curr Microbiol 68:113–119

    Article  CAS  Google Scholar 

  • Sousa CA, Soares EV (2014) Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98:5153–5160

    Article  CAS  Google Scholar 

  • Strandberg GW, Shumate SE II, Parrot JR Jr (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245

    CAS  Google Scholar 

  • Suh JH, Yun JW, Kim DS (1999) Cation (K+, Mg2+, Ca2+) exchange in Pb2+ accumulation by Saccharomyces cerevisiae. Bioprocess Eng 21:383–387

    CAS  Google Scholar 

  • Sunda WG, Guillard RRL (1976) Relationship between cupric ion activity and toxicity of copper to phytoplankton. J Mar Res 34:511–529

    CAS  Google Scholar 

  • Ubeda JF, Maldonado M, Briones AI, Gonzalez FJ (2014) Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents. Curr Microbiol 68:594–602

    Article  CAS  Google Scholar 

  • US-EPA (2006) National recommended water quality criteria. United States Environmental Protection Agency (US-EPA). Office of Water, Science and Technology (4304 T)

  • Van der Heggen M, Martins S, Flores G, Soares EV (2010) Lead toxicity in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:1355–1361

    Article  Google Scholar 

  • Walker LA, Gow NAR, Munro CA (2013) Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother 57:146–154

    Article  CAS  Google Scholar 

  • Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    Article  CAS  Google Scholar 

  • Yu SS, Qin W, Zhuang GQ, Zhang XE, Chen GJ, Liu WF (2009) Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein. Curr Microbiol 58:504–510

    Article  CAS  Google Scholar 

  • Yuan XF, Tang CC (1999) DNA damage and repair in yeast (Saccharomyces cerevisiae) cells exposed to lead. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 34:1117–1128

    Article  Google Scholar 

  • Zhao H, Eide D (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458

    Article  CAS  Google Scholar 

  • Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271:23203–23210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project “BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes” (NORTE-07-0124-FEDER-000028), Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER. Manuela D. Machado gratefully acknowledges the post-doctoral grant from FCT (SFRH/BPD/72816/2010). Vanessa A. Mesquita gratefully acknowledges the grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors also thank to Doctor Rosane Freitas Schwan to offer the yeast strain and to Doctor Helena M.V.M. Soares, from the Faculty of Engineering of Porto University, for the use of analytical facilities (AAS with flame atomization and AAS with electrothermal atomization).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Soares.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, V.A., Machado, M.D., Silva, C.F. et al. Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii . Environ Sci Pollut Res 22, 11127–11136 (2015). https://doi.org/10.1007/s11356-015-4326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4326-9

Keywords

Navigation