Skip to main content
Log in

Evaluating the genotoxicity of urban PM2.5 using PCR-based methods in human lung cells and the Salmonella TA98 reverse test

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A number of compounds found in particulate matter with an aerodynamic diameter <2.5 (PM2.5) can interact with DNA either directly or after enzymatic transformation to induce DNA modifications. These particulate matter (PM)-induced alterations in DNA may be associated with increased frequencies of pollution-associated diseases, such as lung cancer. In the present study, we applied different methods to assess the mutagenicity and genotoxicity of monthly PM2.5 organic extracts collected over a full year. We used the Salmonella assay, exposed cultured human embryonic lung fibroblasts and applied extracellular lactate dehydrogenase (LDH) and 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) assays to assess the cytotoxicity of PM2.5 on the cells. We assessed both the expression levels of a number of DNA repair genes (using qRT-qPCR) and the genetic profile of the treated cells compared to the control. The expression levels of XRCC1 and APE1, which are involved in the first steps of base excision repair, as well as ERCC1, XPA and XPF, which encode nucleotide excision repair subunits, were analysed. The monthly mean of the PM2.5 collected was 35.16 ± 22.06 μg/m3. The mutagenicity of PM2.5 to TA98 was 46 ± 50 net revertants/m3, while the mutagenicity to TA98 + S9 was 17 ± 19 net revertants/m3. The mean IC50 values were 2.741 ± 1.414 and 3.219 ± 2.764 m3 of equivalent air in the XTT and LDH assays, respectively. A marked and significant increase in APE1 expression levels was observed in the exposed cells. This effect was also significantly correlated with mutagenicity (p < 0.01). No induced AFLP fragment profile alterations were detected. The proposed approach seems to be useful for integrated evaluation and for highlighting the mechanisms inducing DNA damage.

Mutagenic, cytotoxic and genotoxic effects that were recorded in vitro over a full year of investigation into PM2.5 organic extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BER:

Base excision repair

LDH:

Extracellular lactate dehydrogenase

NER:

Nucleotide excision repair

PAHs:

Polycyclic aromatic hydrocarbons

PCR:

Polymerase chain reaction

PM:

Particulate matter

PM10:

Particulate matter with an aerodynamic diameter <10 μm

PM2.5:

Particulate matter with an aerodynamic diameter <2.5 μm

RT-qPCR:

Real-time quantitative polymerase chain reaction

XTT:

2,3-Bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt

References

  • Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo JL (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys—part 1: concentrations, sources and gas/particle partitioning. Atmos Environ 42:43–54

    Article  CAS  Google Scholar 

  • Alfaro-Moreno E, Martinez L, Garcia-Cuellar C, Bonner JC, Murray JC, Rosas I, Rosales SP, Osornio-Vargas AR (2002) Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect 110:715–720

    Article  Google Scholar 

  • Arase Y, Nomura J, Sugaya S, Sugita K, Kita K, Suzuki N (2002) Effects of 3-D clino-rotation on gene expression in human fibroblast cells. Cell Biol Int 26:225–233

    Article  CAS  Google Scholar 

  • ARPA Piemonte PdT (2008) Uno sguardo all’aria 2008. Provincia di Torino, Torino

    Google Scholar 

  • ARPA Piemonte SP, CSI Piemonte (2014) ARIAWEB–Sistema Regionale di Rilevamento della Qualità dell’Aria della Regione Piemonte

  • Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  Google Scholar 

  • Bagley MJ, Anderson SL, May B (2001) Choice of methodology for assessing genetic impacts of environmental stressors: polymorphism and reproducibility of RAPD and AFLP fingerprints. Ecotoxicology 10:239–244

    Article  CAS  Google Scholar 

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654

    Article  CAS  Google Scholar 

  • Bastonini E, Verdone L, Morrone S, Santoni A, Settimo G, Marsili G, La Fortezza M, Di Mauro E, Caserta M (2011) Transcriptional modulation of a human monocytic cell line exposed to PM(10) from an urban area. Environ Res 111:765–774

    Article  CAS  Google Scholar 

  • Baurand PE, de Vaufleury A, Scheifler R, Capelli N (2013) Coupling of random amplified polymorphic DNA profiles analysis and high resolution capillary electrophoresis system for the assessment of chemical genotoxicity. Environ Sci Technol 47:9505–9513

    Article  CAS  Google Scholar 

  • Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Armstrong B, Brunekreef B (2008) Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 19:702–710

    Article  Google Scholar 

  • Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ (2007) The multitude and diversity of environmental carcinogens. Environ Res 105:414–429

    Article  CAS  Google Scholar 

  • Ben Salem Z, Capelli N, Grisey E, Baurand PE, Ayadi H, Aleya L (2014) First evidence of fish genotoxicity induced by heavy metals from landfill leachates: the advantage of using the RAPD-PCR technique. Ecotoxicol Environ Saf 101:90–96

    Article  CAS  Google Scholar 

  • Breznan D, Goegan P, Chauhan V, Karthikeyan S, Kumarathasan P, Cakmak S, Nadeau D, Brook JR, Vincent R (2013) Respiratory burst in alveolar macrophages exposed to urban particles is not a predictor of cytotoxicity. Toxicol in Vitro 27:1287–1297

    Article  CAS  Google Scholar 

  • Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, Armstrong B, Hughes E, Jerrett M, van den Brandt P (2009) Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res Rep Health Eff Inst 5–71; discussion 73–89

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  • Bylund L, Kytola S, Lui WO, Larsson C, Weber G (2004) Analysis of the cytogenetic stability of the human embryonal kidney cell line 293 by cytogenetic and STR profiling approaches. Cytogenet Genome Res 106:28–32

    Article  CAS  Google Scholar 

  • Cassoni F, Bocchi C, Martino A, Pinto G, Fontana F, Buschini A (2004) The Salmonella mutagenicity of urban airborne particulate matter (PM2.5) from eight sites of the Emilia-Romagna regional monitoring network (Italy). Sci Total Environ 324:79–90

    Article  CAS  Google Scholar 

  • CEN (1998) Air quality—determination of the PM10 fraction of suspended particulate matter—reference method and field test procedure to demonstrate reference equivalence of measurement methods. In: Standardization ECf (Hrsg.), European Standard EN 12341 Bruxelles

  • Chang LC, Sheu HM, Huang YS, Tsai TR, Kuo KW (1999) A novel function of emodin—enhancement of the nucleotide excision repair of UV- and cisplatin-induced DNA damage in human cells. Biochem Pharmacol 58:49–57

    Article  CAS  Google Scholar 

  • Claxton LD, Woodall GM Jr (2007) A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res 636:36–94

    Article  CAS  Google Scholar 

  • Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347–399

    Article  CAS  Google Scholar 

  • de Kok TM, Hogervorst JG, Briede JJ, van Herwijnen MH, Maas LM, Moonen EJ, Driece HA, Kleinjans JC (2005) Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. Environ Mol Mutagen 46:71–80

    Article  Google Scholar 

  • Eastmond DA, Hartwig A, Anderson D, Anwar WA, Cimino MC, Dobrev I, Douglas GR, Nohmi T, Phillips DH, Vickers C (2009) Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis 24:341–349

    Article  CAS  Google Scholar 

  • EEA (2012) European Environmental Agency—air quality in Europe—2012 report Office for Official Publications of the European Union, Copenhagen

  • Eftim SE, Samet JM, Janes H, McDermott A, Dominici F (2008) Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort. Epidemiology 19:209–216

    Article  Google Scholar 

  • Gallus S, Negri E, Boffetta P, McLaughlin JK, Bosetti C, La Vecchia C (2008) European studies on long-term exposure to ambient particulate matter and lung cancer. Eur J Cancer Prev 17:191–194

    Article  Google Scholar 

  • Gilli G, Pignata C, Schiliro T, Bono R, La Rosa A, Traversi D (2007) The mutagenic hazards of environmental PM2.5 in Turin. Environ Res 103:168–175

    Article  CAS  Google Scholar 

  • Grant WB (2009) Air pollution in relation to U.S. cancer mortality rates: an ecological study; likely role of carbonaceous aerosols and polycyclic aromatic hydrocarbons. Anticancer Res 29:3537–3545

    CAS  Google Scholar 

  • Happo MS, Salonen RO, Halinen AI, Jalava PI, Pennanen AS, Dormans JAMA, Gerlofs-Nijland ME, Cassee FR, Kosma VM, Sillanpaa M, Hillamo R, Hirvonen MR (2010) Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol 22:402–416

    Article  CAS  Google Scholar 

  • Jain S, Khare M (2008) Urban air quality in mega cities: a case study of Delhi City using vulnerability analysis. Environ Monit Assess 136:257–265

    Article  CAS  Google Scholar 

  • Ji H, Hershey GKK (2012) Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol 129:33–41

    Article  CAS  Google Scholar 

  • Kam W, Delfino RJ, Schauer JJ, Sioutas C (2013) A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ Sci Process Impacts 15:234–243

    Article  CAS  Google Scholar 

  • Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Hoppe P, Koch E, Krause GH, Kreyling WG, Rauchfuss K, Rombout P, Schulz-Klemp V, Thiel WR, Wichmann HE (2004) Health effects of particles in ambient air. Int J Hyg Environ Health 207:399–407

    Article  CAS  Google Scholar 

  • Krewski D, Burnett R, Jerrett M, Pope CA, Rainham D, Calle E, Thurston G, Thun M (2005) Mortality and long-term exposure to ambient air pollution: ongoing analyses based on the American Cancer Society cohort. J Toxicol Environ Health A 68:1093–1109

    Article  CAS  Google Scholar 

  • Krzyzanowski M (2008) WHO air quality guidelines for Europe. J Toxicol Environ Health A 71:47–50

    Article  CAS  Google Scholar 

  • Libalova H, Uhlirova K, Klema J, Machala M, Sram RJ, Ciganek M, Topinka J (2012) Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles. Part Fibre Toxicol 9

  • Lindgren A, Stroh E, Montnemery P, Nihlen U, Jakobsson K, Axmon A (2009) Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr 8:2

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K, IARC (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263

    Article  CAS  Google Scholar 

  • Maruyama W, Hirano S, Kobayashi T, Aoki Y (2006) Quantitative risk analysis of particulate matter in the air: interspecies extrapolation with bioassay and mathematical models. Inhal Toxicol 18:1013–1023

    Article  Google Scholar 

  • Mehta M, Chen LC, Gordon T, Rom W, Tang MS (2008) Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res 657:116–121

    Article  CAS  Google Scholar 

  • Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandstrom T, Blomberg A, Newby DE (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6:36–44

    Article  CAS  Google Scholar 

  • Moller P, Folkmann JK, Forchhammer L, Brauner EV, Danielsen PH, Risom L, Loft S (2008) Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett 266:84–97

    Article  CAS  Google Scholar 

  • Mukherjee B, Dutta A, Roychoudhury S, Ray MR (2013) Chronic inhalation of biomass smoke is associated with DNA damage in airway cells: involvement of particulate pollutants and benzene. J Appl Toxicol 33:281–289

    Article  Google Scholar 

  • Nagdeve D (2006) Urban air pollution and its influence on human health in mega cities of India. Epidemiology 17:S261–S262

    Article  Google Scholar 

  • Nemery B, Hoet PH, Nemmar A (2001) The Meuse Valley fog of 1930: an air pollution disaster. Lancet 357:704–708

    Article  CAS  Google Scholar 

  • Nogueira JB (2009) Air pollution and cardiovascular disease. Rev Port Cardiol 28:715–733

    Google Scholar 

  • Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Donner EM, Honma M, Kirsch-Volders M, Landsiedel R, Manjanatha M, Singer T, Kim JH (2013) Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen 54:229–239

    Article  CAS  Google Scholar 

  • Pope CA 3rd (1996) Particulate pollution and health: a review of the Utah valley experience. J Expo Anal Environ Epidemiol 6:23–34

    Google Scholar 

  • Pope CA 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Suppl 4):713–723

    Article  CAS  Google Scholar 

  • Silva JP, Gomes AC, Coutinho OP (2008) Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur J Pharmacol 601:50–60

    Article  CAS  Google Scholar 

  • Sorensen M, Autrup H, Hertel O, Wallin H, Knudsen LE, Loft S (2003a) Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 12:191–196

    CAS  Google Scholar 

  • Sorensen M, Autrup H, Moller P, Hertel O, Jensen SS, Vinzents P, Knudsen LE, Loft S (2003b) Linking exposure to environmental pollutants with biological effects. Mutat Res 544:255–271

    Article  CAS  Google Scholar 

  • Srut M, Stambuk A, Klobucar GI (2013) What is comet assay not telling us: AFLP reveals wider aspects of genotoxicity. Toxicol in Vitro 27:1226–1232

    Article  CAS  Google Scholar 

  • Ta W, Wang T, Xiao H, Zhu X, Xiao Z (2004) Gaseous and particulate air pollution in the Lanzhou Valley, China. Sci Total Environ 320:163–176

    Article  CAS  Google Scholar 

  • Traversi D, Schiliro T, Degan R, Pignata C, Alessandria L, Gilli G (2011) Involvement of nitro-compounds in the mutagenicity of urban Pm2.5 and Pm10 in Turin. Mutat Res Genet Toxicol Environ Mutagen 726:54–59

    Article  CAS  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339–362

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3

  • Vardar C, Basaran E, Cansaran-Duman D, Aras S (2014) Air-quality biomonitoring: assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutat Res Genet Toxicol Environ Mutagen 759:43–50

    Article  CAS  Google Scholar 

  • Viera L, Chen K, Nel A, Lloret MG (2009) The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Curr Allergy Asthma Rep 9:327–333

    Article  CAS  Google Scholar 

  • Vineis P et al (2007) Lung cancers attributable to environmental tobacco smoke and air pollution in non-smokers in different European countries: a prospective study. Environ Health 6:7

    Article  Google Scholar 

  • Vinikoor-Imler LC, Davis JA, Luben TJ (2011) An ecologic analysis of county-level PM2.5 concentrations and lung cancer incidence and mortality. Int J Environ Res Public Health 8:1865–1871

    Article  Google Scholar 

  • Voigt T, Bailey M, Abramson M (1998) Air pollution in the Latrobe Valley and its impact upon respiratory morbidity. Aust N Z J Public Health 22:556–561

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • WHO (2005) Air quality guidelines—global update 2005

  • WHO-Europe (2013) Review of evidence on health aspects of air pollution—Technical Report—REVIHAAP Project

  • Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes, 2005. Mutat Res Fundam Mol Mech Mutagen 577:275–283

    Article  CAS  Google Scholar 

  • Yang J, Wang Z, Chen W, Yin J (2013) Role of ubiquitin protein ligase Ring2 in DNA damage of human bronchial epithelial cells exposed to benzo[a]pyrene. J Biochem Mol Toxicol 27:357–363

    Article  CAS  Google Scholar 

  • Zhang M, Song Y, Cai X, Zhou J (2008) Economic assessment of the health effects related to particulate matter pollution in 111 Chinese cities by using economic burden of disease analysis. J Environ Manag 88:947–954

    Article  Google Scholar 

  • Zhang JJ, McCreanor JE, Cullinan P, Chung KF, Ohman-Strickland P, Han IK, Jarup L, Nieuwenhuijsen MJ (2009) Health effects of real-world exposure to diesel exhaust in persons with asthma. Res Rep Health Eff Inst 5–109; discussion 111–23

Download references

Acknowledgments

This study was funded by the University of Turin as a local project (ex. 60 %, 2012). The authors thank their colleagues (Prof. Giorgio Gribaudo and Dr. Anna Luganini) for supplying the HELF cells and the Environmental Protection Agency of Piedmont (particularly Dr. F. Lollobrigida) for collecting the PM2.5 samples. Moreover, the authors thank Dr. Roberto Arbore for his collaboration during his training period.

Authors’ contributions

Dr. Traversi designed the study and performed the PM2.5 sample extractions, Salmonella, cytotoxicity and gene expression assays. Dr. Cervella performed the AFLP assay. Dr. Gilli provided the PM2.5 samples and contacted the local Environmental Protection Agency. Dr. Gilli and Dr. Traversi analysed the data. Dr. Traversi prepared the manuscript. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Traversi.

Additional information

Responsible editor: Philippe Garrigues

Highlights

Fine particles are crucial urban pollution indicators.

PM2.5 produces marked mutagenic and cytotoxic effects in vitro.

APE1 gene overexpression provided an effect evidence, but no AFLP profile alterations were induced.

These effects displayed a significant seasonal trend.

Multi-assay approach displayed an advantage in conducting genotoxic assessments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials 1

(GIF 204 kb)

High resolution

(TIFF 2902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traversi, D., Cervella, P. & Gilli, G. Evaluating the genotoxicity of urban PM2.5 using PCR-based methods in human lung cells and the Salmonella TA98 reverse test. Environ Sci Pollut Res 22, 1279–1289 (2015). https://doi.org/10.1007/s11356-014-3435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3435-1

Keywords

Navigation