Skip to main content
Log in

Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172 ± 176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxification of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335. doi:10.1016/j.taap.2003.10.027

    Article  CAS  Google Scholar 

  • Blute NK, Jay JA, Swartz CH, Brabander DJ, Hemond HF (2009) Aqueous and solid-phase arsenic speciation in the sediments of a contaminated wetland and riverbed. Appl Geochem 24:346–358

    Article  CAS  Google Scholar 

  • Bocchetti R, Fattorini D, Gambi MC, Regoli F (2004) Trace metal concentrations and susceptibility to oxidative stress in the polychaete Sabella spallanzanii (Gmelin) (Sabellidae): potential role of antioxidants in revealing stressful environmental conditions in the Mediterranean. Arch Environ Contam Toxicol 46:353–361

    Article  CAS  Google Scholar 

  • Bryan GW, Gibbs PE (1983) Heavy metals in the Fal Estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Occas Pub Mar Biol Assoc UK 2:1–112

    Google Scholar 

  • Bryan GW, Hummerstone LG (1971) Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of heavy metals. General observations and adaptation to copper. J Mar Biol Assoc UK 51:845–863

    Article  CAS  Google Scholar 

  • Bryszewska MA, Sanz E, Sanz-Landaluze J, Munoz-Olivas R, Ortiz-Santaliestra ME, Camara C (2011) Evaluation of arsenic biotransformation by Iberian green frog during metamorphosis. J Anal At Spectrom 26:178–186. doi:10.1039/c0ja00084a

    Article  CAS  Google Scholar 

  • Cairns MA, Nebeker AV, Gakstatter JH, Griffs WL (1984) Toxicity of copper-spiked sediments to freshwater invertebrates. Environ Toxicol Chem 3:435–445

    Article  CAS  Google Scholar 

  • Chen C, Dionne M, Mayes B, Ward D, Sturup S, Jackson B (2009) Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ Sci Technol 43:1804–1810

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo FJ, Fendorf SE, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Int J Trop Biol 56(4):11–38

    Google Scholar 

  • Demuynck S, Dhainaut-Courtois N (1994) Metal-binding patterns in the polychaete worm Nereis diversicolor during short-term acute cadmium stress. Comp Biochem Physiol C 108:59–64

    Article  Google Scholar 

  • Environment Canada (1995) Guidance document on measurement of toxicity test precision using control sediments spiked with a reference toxicant. Environmental protection series. Report EPS 1/RM/30. Environmental Technology Center, Ottawa, ON. ISBN 0-660-16426-4.

  • Esselink P, Zwarts L (1989) Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar Ecol Prog Ser 56:243–254

    Article  Google Scholar 

  • Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the Mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887

    Article  CAS  Google Scholar 

  • Fattorini D, Alonso-Hernandez CM, Diaz-Asencio M, Munoz-Caravaca A, Pannacciulli FG, Tangherlini M, Regoli F (2004) Chemical speciation of arsenic in different marine organisms: importance in monitoring study. Mar Environ Res 58:845–850

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Regoli F (2006) Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chem Ecol 22:405–414

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Di Mento R, Cicero AM, Gabellini M, Russo A, Regoli F (2008) Seasonal, spatial, and interannual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of offshore activities. Chemosphere 72:1524–1533

    Article  CAS  Google Scholar 

  • Fattorini D, Sarkar SK, Regoli F, Bhattacharya BD, Rakshit D, Satpathy KK, Chatterjee M (2013) Levels and chemical speciation of arsenic in representative biota and sediments of a tropical mangrove wetland, India. Environ Sci: Processes Impacts, in-press. doi:10.1039/C3EM30819G

    Google Scholar 

  • Fauser P, Sanderson H, Hedegaard RV, Sloth JJ, Larsen MM, Krongaard T, Bossi R, Larsen JB (2013) Occurrence and sorption properties of arsenicals in marine sediments. Environ Monit Assess 185:4679–4691. doi:10.1007/s10661-012-2896-2

    Article  CAS  Google Scholar 

  • Francesconi KA, Edmonds JS (1987) The identification of arsenobetaine as the sole water-soluble arsenic constituent of the tail muscle of the western king prawn Penaeus latisulcatus. Comp Biochem Physiol C 87(2):345–347

    Article  CAS  Google Scholar 

  • Gaion A, Scuderi A, Pellegrini D, Sartori D (2013) Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776). Bull Environ Contam Toxicol 90:120–125. doi:10.1007/s00128-012-0875-5

    Article  CAS  Google Scholar 

  • Geiszinger AE, Goesslerb W, Francesconi KA (2002) Biotransformation of arsenate to the tetramethyl-arsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environ Sci Technol 36:2905–2910

    Article  CAS  Google Scholar 

  • Gibbs PE, Langston WJ, Burt GR, Pascoe PL (1983) Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J Mar Biol Assoc UK 63:313–325

    Article  CAS  Google Scholar 

  • Hanaoka K, Tagawa S, Kaise T (1992) The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia 235(236):623–628

    Article  Google Scholar 

  • Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmacol 198(3):458–467. doi:10.1016/j.taap.2003.10.023

    Article  CAS  Google Scholar 

  • Jenkins RO, Ritchie AW, Edmonds JS, Goessler W, Molenat N, Kuehnelt D, Harrington CF, Sutton PG (2003) Bacterial degradation of arsenobetaine via dimethylarsinoylacetate. Arch Microbiol 180(2):142–150

    Article  CAS  Google Scholar 

  • King CK, Gale SA, Stauber JL (2006) Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the Estuarine Amphipod Melita plumulosa. Environ Toxicol 21(5):489–504. doi:10.1002/tox.20211

    Article  CAS  Google Scholar 

  • Landrum PF, Eadie BJ, Faust WR (1991) Toxicokinetics and toxicity of a mixture of sediment-associated polycyclic aromatic hydrocarbons to the amphipod Diporeia sp. Environ Toxicol Chem 10:35–46

    Article  CAS  Google Scholar 

  • Langston WJ (1980) Arsenic in UK estuarine sediments and its availability to benthic organisms. J Mar Biol Assoc UK 60:869–881

    Article  Google Scholar 

  • Lera S, Macchia S, Dentone L, Pellegrini D (2008) Variations in sensitivity of two populations of Corophium orientale (Crustacea: Amphipoda) towards cadmium and sodium laurylsulphate. Comparison of two populations of Corophium orientale. Environ Monit Assess 136:121–127

    Article  CAS  Google Scholar 

  • Lucas FS, Bertru G, Höfle MG (2003) Characterization of free-living and attached bacteria in sediments colonized by Hediste diversicolor. Aquat Microb Ecol 32:165–174

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 479–608

    Google Scholar 

  • Mayor DJ, Solana M, Martinez I, Murray L, McMillan H, Paton GI, Killham K (2008) Acute toxicity of some treatments commonly used by the salmonid aquaculture industry to Corophium volutator and Hediste diversicolor: whole sediment bioassay tests. Aquaculture 285:102–108. doi:10.1016/j.aquaculture.2008.08.008

    Article  CAS  Google Scholar 

  • Meador JP, Ernest DW, Kagley A (2004) Bioaccumulation of arsenic in marine fish and invertebrates from Alaska and California. Arch Environ Contam Toxicol 47:223–233

    Article  CAS  Google Scholar 

  • Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:731–744. doi:10.1007/s00227-003-1124-6

    Article  CAS  Google Scholar 

  • Mugnai C, Braida T, Pellegrini D, Barghigiani C, Scerbo R, Volpi Ghirardini A, Bigongiari N (2001) Test di bioaccumulo con il polichete Hediste diversicolor. Biologia Marina Mediterranea 8(2):72–84

    Google Scholar 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26:1186–1191

    Article  CAS  Google Scholar 

  • Ozoh PTE (1994) The effect of salinity, temperature and time on the accumulation and depuration of copper in ragworm, Hediste diversicolor (O.F. Muller). Environ Monit Assess 29:155–166

    Article  CAS  Google Scholar 

  • Pickett AW, McBride BC, Cullen WR, Manji H (1981) The reduction of trimethylarsine oxide by Candida humicola. Can J Microbiol 27(8):773–778

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Francke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 14:2075–2080

    Article  CAS  Google Scholar 

  • Rainbow PS, Smith BD, Casado-Martinez MC (2011) Biodynamic modeling of the bioaccumulation of arsenic by the polychaete Nereis diversicolor. Environ Chem 8:1–8

    Article  CAS  Google Scholar 

  • Roedel G, Sanders JG, Osman RW (1989) The role of threes species of benthic invertebrates in the transport of arsenic from contaminated estuarine sediment. J Exp Mar Biol Ecol 134:1143–1155

    Google Scholar 

  • Saltikov CW, Olson BH (2002) Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol 68(1):280–288. doi:10.1128/AEM.68.1.280-288.2002

    Article  CAS  Google Scholar 

  • Scartlett A, Rowland SJ, Canty M, Smith EL, Galloway TS (2007) Method for assessing the chronic toxicity of marine and estuarine sediment-associated contaminants using the amphipod Corophium volutator. Mar Environ Res 63:457–470. doi:10.1016/j.marenvres.2006.12.006

    Article  CAS  Google Scholar 

  • Selck H, Palmqvist A, Forbes VE (2003a) Biotransformation of dissolved and sediment-bound fluoranthene in the polychaete, Capitella sp. Environ Toxicol Chem 22(10):2364–2374

    Article  CAS  Google Scholar 

  • Selck H, Palmqvist A, Forbes VE (2003b) Uptake, depuration, and toxicity of dissolved and sediment-bound fluoranthene in the polychaete, Capitella sp. Environ Toxicol Chem 22(10):2354–2363

    Article  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health B 16(1):35–47

    Article  CAS  Google Scholar 

  • Shibata Y, Yoshinaga J, Morita M (1994) Detection of arsenobetaine in human blood. Appl Organomet Chem 3:249–251

    Article  Google Scholar 

  • Stemmer BL, Burton GA, Leibfritz-Frederick S (1990) Effect of sediment test variables on selenium toxicity to Daphnia magna. Environ Toxicol Chem 9:381–389

    Article  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145

    Article  CAS  Google Scholar 

  • U.S. EPA (2007) Sediment toxicity identification evaluation (TIE) phases I, II, and III Guidance Document EPA/600/R-07/080. Office of Research and Development. Washington, DC.

  • Ventura-Lima J, Sandrini JZ, Cravo MF, Piedras FR, Moraes TB, Fattorini D, Notti A, Regoli F, Geracitano LA, Marins LFF, Monserrat JM (2007) Toxicological responses in Laeonereis acuta (Annelida, Polychaeta) after arsenic exposure. Environ Int 33(4):559–564. doi:10.1016/j.envint.2006.09.016

    Article  CAS  Google Scholar 

  • Virgilio M, Fauvelot C, Costantini F, Abbiati M, Backeljau T (2009) Phylogeography of the common ragworm Hediste diversicolor (Polychaeta: Nereididae) reveals cryptic diversity and multiple colonization events across its distribution. Mol Ecol 18(9):1980–1994. doi:10.1111/j.1365-294X.2009.04170.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gaion.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaion, A., Sartori, D., Scuderi, A. et al. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments. Environ Sci Pollut Res 21, 5952–5959 (2014). https://doi.org/10.1007/s11356-014-2538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2538-z

Keywords

Navigation