Skip to main content
Log in

Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many xenobiotics, including several pharmaceuticals and pesticides, are poorly treated in domestic wastewater treatment plants. Adsorption processes, such as with activated carbons, could be a solution to curb their discharge into the aquatic environment. As adsorbent-like activated carbon is known to be expensive, identifying promising alternative adsorbent materials is a key challenge for efficient yet affordable xenobiotic removal from wastewaters. As part of the effort to address this challenge, we surveyed the literature on pharmaceutical and pesticide xenobiotics and built a database compiling data from 38 scientific publications covering 65 xenobiotics and 58 materials. Special focus was given to the relevance and comparability of the data to the characteristics of the adsorbent materials used and to the operating conditions of the batch tests inventoried. This paper gives an in-depth overview of the adsorption capacities of various adsorbents. The little data on alternative adsorbent materials, especially for the adsorption of pharmaceuticals, makes it difficult to single out any one activated carbon alternative capable of adsorbing pesticides and pharmaceuticals at the tertiary stage of treatment. There is a pressing need for further lab-scale experiments to investigate the tertiary treatment of discharged effluents. We conclude with recommendations on how future data should best be used and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi A, Takagi S, Okano T (2001) Studies on removal efficiency of rice bran for pesticides. J Heal Sci 47(2):94–98

    Article  CAS  Google Scholar 

  • Adriano WS, Veredas V, Santana CC, Gonçalves LRB (2005) Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium, and validation of finite bath models. Biochem Eng J 27(2):132–137

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interf Sci 143(1–2):48–67

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  • Aksu Z, Yener J (1998) Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Process Biochem 33(6):649–655

    Article  CAS  Google Scholar 

  • Ayranci E, Hoda N (2005) Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60(11):1600–1607

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122(3):195–204

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interf Sci 152(1–2):26–38

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157(2–3):277–296

    Article  CAS  Google Scholar 

  • Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34(16):3907–3916

    Article  CAS  Google Scholar 

  • Bui TX, Choi H (2009) Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 168(2–3):602–608

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics, and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, García C, Rodriguez I, Gómez M, Ternes T (2005) Behavior of pharmaceuticals and personal care products in a sewage treatment plant of northwest Spain. Water Sci Technol 52(8):29–35

    CAS  Google Scholar 

  • Chang PH, Li Z, Jiang WT, Jean JS (2009a) Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci 46(1):27–36

    Article  CAS  Google Scholar 

  • Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009b) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165(1–3):148–155

    Article  CAS  Google Scholar 

  • Crini G (2006) Nonconventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99(10):4515–4519

    Article  CAS  Google Scholar 

  • De Ridder DJ, Verliefde ARD, Heijman SGJ, Verberk JQJC, Rietveld LC, Van Der Aa LTJ, Amy GL, Van Dijk JC (2011) Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon. Water Sci Technol 63(3):416–423

    Article  Google Scholar 

  • de Ridder DJ, Villacorte L, Verliefde ARD, Verberk JQJC, Heijman SGJ, Amy GL, van Dijk JC (2010) Modeling equilibrium adsorption of organic micropollutants onto activated carbon. Water Res 44(10):3077–3086

    Article  Google Scholar 

  • Ding Y, Zhao Y, Tao X, Zheng YZ, Chen JF (2009) Assembled alginate/chitosan microshells for removal of organic pollutants. Polymer 50(13):2841–2846

    Article  CAS  Google Scholar 

  • Dordio AV, Carvalho AJP (2013) Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix J Hazard Mater 252–253:271–292

    Google Scholar 

  • Falås P, Andersen HR, Ledin A, La Cour JJ (2012) Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants. Water Sci Technol 66(4):783–791

    Article  Google Scholar 

  • Gabet-Giraud V, Miège C, Choubert JM, Ruel SM, Coquery M (2010) Occurrence and removal of estrogens and beta-blockers by various processes in wastewater treatment plants. Sci Total Environ 408(19):4257–4269

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Suhas SVK (2006) Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. J Colloid Interface Sci 299(2):556–563

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmad AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 164(2–3):870–875

    Article  CAS  Google Scholar 

  • Hameed BH, Salman JM, Ahmad AL (2009) Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater 163(1):121–126

    Article  CAS  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266(3–4):175–189

    Article  CAS  Google Scholar 

  • Høibye L, Clauson-Kaas J, Wenzel H, Larsen HF, Jacobsen BN, Dalgaard O (2008) Sustainability assessment of advanced wastewater treatment technologies. Water Sci Technol 58(5):963–968

    Article  Google Scholar 

  • Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices: a review. J Environ Manag 92(10):2304–2347

    Article  CAS  Google Scholar 

  • Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23(4):163–167

    Article  CAS  Google Scholar 

  • Kim TY, Park SS, Kim SJ, Cho SY (2008) Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption 14(4–5):611–619

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Lemić J, Kovačević D, Tomašević-Čanović M, Stanić T, Pfend R (2006) Removal of atrazine, lindane, and diazinone from water by organozeolites. Water Res 40(5):1079–1085

    Article  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling, and measurement. Appl Geochem 22(2):249–275

    Article  CAS  Google Scholar 

  • Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367(2–3):544–558

    Article  CAS  Google Scholar 

  • Martin Ruel S, Choubert JM, Esperanza M, Miège C, Navalón Madrigal P, Budzinski H, Le Ménach K, Lazarova V, Coquery M (2011) On-site evaluation of the removal of 100 micropollutants through advanced wastewater treatment processes for reuse applications. Water Sci Technol 63(11):2486–2497

    Article  CAS  Google Scholar 

  • Martin Ruel S, Esperanza M, Choubert JM, Valor I, Budzinski H, Coquery M (2010) On-site evaluation of the efficiency of conventional and advanced secondary processes for the removal of 60 organic micropollutants. Water Sci Technol 62(12):2970–2978

    Article  CAS  Google Scholar 

  • Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, Ania CO (2009) Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour Technol 100(5):1720–1726

    Article  CAS  Google Scholar 

  • Molle P, Liénard A, Grasmick A, Iwema A, Kabbabi A (2005) Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Water Sci Technol 51:193–203

    CAS  Google Scholar 

  • Otero M, Grande CA, Rodrigues AE (2004) Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. React Funct Polym 60(1–3):203–213

    Article  CAS  Google Scholar 

  • Palmer PM, Wilson LR, O’Keefe P, Sheridan R, King T, Chen CY (2008) Sources of pharmaceutical pollution in the New York City watershed. Sci Total Environ 394(1):90–102

    Article  CAS  Google Scholar 

  • Pan B, Zhang W, Lv L, Zhang Q, Zheng S (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151(1–3):19–29

    Article  CAS  Google Scholar 

  • Polubesova T, Zadaka D, Groisman L, Nir S (2006) Water remediation by micelle-clay system: case study for tetracycline and sulfonamide antibiotics. Water Res 40(12):2369–2374

    Article  CAS  Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43(9):2419–2430

    Google Scholar 

  • Quesada-Peñate I, Julcour-Lebigue C, Jáuregui-Haza UJ, Wilhelm AM, Delmas H (2009) Comparative adsorption of levodopa from aqueous solution on different activated carbons. Chem Eng J 152(1):183–188

    Article  Google Scholar 

  • Rakić V, Rajić N, Daković A, Auroux A (2013) The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous Mesoporous Mater 166:165–194

    Google Scholar 

  • Salman JM, Hameed BH (2010) Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon. J Hazard Mater 176(1–3):814–819

    Article  CAS  Google Scholar 

  • Sarkar B, Venkateswralu N, Rao RN, Bhattacharjee C, Kale V (2007) Treatment of pesticide contaminated surface water for production of potable water by a coagulation–adsorption–nanofiltration approach. Desalination 212(1–3):129–140

    Article  CAS  Google Scholar 

  • Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95(1–2):137–152

    Article  CAS  Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181

    Article  CAS  Google Scholar 

  • Sotelo JL, Ovejero G, Delgado JA, Martínez I (2002) Adsorption of lindane from water onto GAC: effect of carbon loading on kinetic behavior. Chem Eng J 87(1):111–120

    Article  CAS  Google Scholar 

  • Spongberg AL, Witter JD (2008) Pharmaceutical compounds in the wastewater process stream in northwest Ohio. Sci Total Environ 397(1–3):148–157

    Article  CAS  Google Scholar 

  • Sun G, Xu X (1997) Sunflower stalks as adsorbents for color removal from textile wastewater. Ind Eng Chem Res 36(3):808–812

    Article  CAS  Google Scholar 

  • Ternes T, Janex-Habibi T, Knaker N, Kreuzinger N, Siegrist H (2004) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse (POSEIDON project)

  • Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC - Trends Anal Chem 20(8):419–434

    Article  CAS  Google Scholar 

  • Togola A, Budzinski H (2008) Multiresidue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177(1):150–158

    Article  CAS  Google Scholar 

  • Vergili I, Barlas H (2009) Removal of selected pharmaceutical compounds from water by an organic polymer resin. J Sci Ind Res 68(5):417–425

    CAS  Google Scholar 

  • Verlicchi P, Galletti A, Petrovic M, BarcelÓ D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389(3–4):416–428

    Article  CAS  Google Scholar 

  • Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A 1134(1–2):101–111

    CAS  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

    Article  CAS  Google Scholar 

  • Wenzel H, Larsen HF, Clauson-Kaas J, Høibye L, Jacobsen BN (2008) Weighing environmental advantages and disadvantages of advanced wastewater treatment of micropollutants using environmental life cycle assessment. Water Sci Technol 57(1):27–32

    Article  CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39(17):6649–6663

    Article  CAS  Google Scholar 

  • Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862

    Article  Google Scholar 

  • Xu J, Wu L, Chang AC (2009) Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 77(10):1299–1305

    Article  CAS  Google Scholar 

  • Xu RK, Xiao SC, Zhang H, Jiang J, Ji GL (2007) Adsorption of phthalic acid and salicylic acid by two variable charge soils as influenced by sulfate and phosphate. Eur J Soil Sci 58(1):335–342

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2007) Adsorption and oxidation of fluoroquinolone antibacterial agents and structurallyrelated amines with goethite. Chemosphere 66(8):1502–1512

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790

    Article  CAS  Google Scholar 

  • Zuhra Memon G, Bhanger MI, Akhtar M (2007) The removal efficiency of chestnut shells for selected pesticides from aqueous solutions. J Colloid Interface Sci 315(1):33–40

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the French National Agency for Water and Aquatic Ecosystems (ONEMA) for providing funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Choubert.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 150 kb)

ESM 2

(XLS 160 kb)

ESM 3

(DOC 38 kb)

ESM 4

(XLS 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahar, A., Choubert, JM. & Coquery, M. Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review. Environ Sci Pollut Res 20, 5085–5095 (2013). https://doi.org/10.1007/s11356-013-1754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1754-2

Keywords

Navigation