Skip to main content
Log in

Nonlinear Parameter Identification of a Mechanical Interface Based on Primary Wave Scattering

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We study stress-wave propagation in an impulsively forced split Hopkinson bar system incorporating a threaded interface. We first consider only primary transmission and reflection and reduce the problem to a first-order, strongly nonlinear ordinary differential equation governing the displacement across the interface, called the primary-pulse model. The interface is modeled as an adjusted-Iwan element, which is characterized by matching experimental and numerical eigenfrequencies as well as primary pulse amplitudes. We find that the adjusted-Iwan element parameters are dependent on preload and impact velocity (input force). A high-order finite element model paired with the identified adjusted-Iwan element is used to simulate multiple transmissions and reflections across the interface. We find that the finite element simulation reproduces the experimental results in both the wavelet and Fourier domains, validating the identification method. Our findings demonstrate that the primary-pulse model can be used for experimental parameter identification of nonlinear interfaces in waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc Lond Ser -Contain Pap Math Phys Character 213:437–456

    Article  Google Scholar 

  2. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62:676–700

    Article  Google Scholar 

  3. Gray GT (2000) Classical split Hopkinson pressure rod technique, ASM handbook. Mech Test Eval 8:462–472

  4. Alves M, Karagiozova D, Micheli GB, Calle MAG (2012) Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen. Int. J. Impact Eng 49:130–141

    Article  Google Scholar 

  5. Rajagopalan S, Prakash V (1999) A modified torsional Kolsky rod for investigating dynamic friction. Exp Mech 39:295–303

    Article  Google Scholar 

  6. Espinosa HD, Patanella A, Fischer M (2000) A novel dynamic friction experiment using a modified Kolsky rod apparatus. Exp Mech 40:138–153

    Article  Google Scholar 

  7. Durand B, Delvare F, Bailly P, Picart D (2016) A split Hopkinson pressure bar device to carry out confined friction tests under high pressures. Int. J. Impact Eng 88:54–60

    Article  Google Scholar 

  8. Renno JM, Mace BR (2013) Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J Sound Vib 332:2149–2164

    Article  Google Scholar 

  9. Foley JR, Dodson JC, McKinnon CM, Luk VK, Falbo GL (2010) Split Hopkinson rod experiments of preloaded interfaces. Proc. IMPLAST 2010 Conf

  10. Dodson JC, Wolfson J, Foley JR, Inman DJ (2012) Transmission of Guided Waves Across Prestressed Interfaces. In: Adams D, Kerschen G, Carrella A (eds) Top. Nonlinear Dyn. Vol. 3. Springer New York, pp 83–94

  11. Dodson JC, Lowe RD, Foley JR, Mougeotte C, Geissler D, Cordes J (2014) Dynamics of Interfaces with Static Initial Loading. In: Song B, Casem D, Kimberley J (eds) Dyn. Behav. Mater. Vol. 1. Springer International Publishing, pp 37–50

  12. Pilipchuk VN, Azeez MAF, Vakakis AF (1996) Primary pulse transmission in a strongly nonlinear periodic system. Nonlinear Dyn 11:61–81

    Article  Google Scholar 

  13. Starosvetsky Y, Vakakis AF (2011) Primary wave transmission in systems of elastic rods with granular interfaces. Wave Motion 48:568–585

    Article  MATH  Google Scholar 

  14. Starosvetsky Y, Jayaprakash KR, Vakakis AF, Kerschen G, Manevitch LI (2012) Effective particles and classification of the dynamics of homogeneous granular chains with no precompression. Phys Rev E 85:036606

    Article  Google Scholar 

  15. Iwan WD (1966) A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response. J Appl Mech 33:893–900

    Article  Google Scholar 

  16. Iwan WD (1967) On a Class of Models for the Yielding Behavior of Continuous and Composite Systems. J Appl Mech 34:612–617

    Article  Google Scholar 

  17. Precision Filters, Inc. (2009) Precision 28144 Quad-Channel Wideband transducer conditioner with voltage and current excitation, Ithaca, NY. Retrieved from http://www.pfinc.com/library/pdf_files/current_product_specs/28144_spec_sheet.pdf

  18. National Instruments (2003) NI PXI-6133 specifications, Austin, TX. Retrieved from http://www.ni.com/pdf/manuals/371231d.pdf

  19. Ueda K, Umeda A (1998) Dynamic response of strain gages up to 300 kHz. Exp Mech 38:93–98

    Article  Google Scholar 

  20. Kulite Semiconductor Products (2001) Kulite strain gage manual. Leonia, NJ. Retrieved from https://www.kulite.com/docs/products_overview/StrainGageManualDigital.pdf

  21. Chen WW, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer

  22. Biot MA (1940) The Influence of Initial Stress on Elastic Waves. J Appl Phys 11:522–530

    Article  MathSciNet  MATH  Google Scholar 

  23. Gorham DA (1983) A numerical method for the correction of dispersion in pressure bar signals. J Phys [E] 16:477

    Google Scholar 

  24. Bancroft D (1941) The Velocity of Longitudinal Waves in Cylindrical Bars. Phys Rev 59:588–593

    Article  Google Scholar 

  25. Segalman DJ, Starr MJ (2012) Iwan models and their provenance. pp 441–449

  26. Segalman DJ (2005) A four-parameter Iwan model for lap-type joints. J Appl Mech Trans ASME 72:752–760

    Article  MATH  Google Scholar 

  27. Mignolet MP, Song P, Wang XQ (2015) A stochastic Iwan-type model for joint behavior variability modeling. J Sound Vib 349:289–298

    Article  Google Scholar 

  28. Brake MRW (2016) A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. doi:10.1007/s11071-016-3117-2

  29. Gaul L, Lenz J (1997) Nonlinear dynamics of structures assembled by bolted joints. Acta Mech 125:169–181

    Article  MATH  Google Scholar 

  30. Song Y, Hartwigsen CJ, McFarland DM, Vakakis AF, Bergman LA (2004) Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J Sound Vib 273:249–276

    Article  Google Scholar 

  31. Li Y, Hao Z (2016) A six-parameter Iwan model and its application. Mech Syst Signal Process 68–69:354–365

    Article  Google Scholar 

  32. Van Zandt T (2006) Development of Efficient Reduced Models for Multi-Dynamics Simulations of Helicopter Wing Missile Configurations. Master’s Thesis, University of Massachusetts Lowell

  33. Pochhammer L (1876) Biegung des kreiscylinders-fortpflanzungsgeschwindigkeit kleiner schwingungen in einem kreiscylinder. J Reine Angew Math 81:326–336

  34. Chree C (1886) Longitudinal vibrations of a circular bar. Q J Pure Appl Math 21:287–288

  35. Love AEH (1892) A treatise on the mathematical theory of elasticity, Cambridge [Eng]

Download references

Acknowledgements

This work was supported in part by the National Science Foundation Graduate Research Fellowship Program under Grant Number DGE-1144245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Moore.

Ethics declarations

Disclaimer

Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, K.J., Kurt, M., Eriten, M. et al. Nonlinear Parameter Identification of a Mechanical Interface Based on Primary Wave Scattering. Exp Mech 57, 1495–1508 (2017). https://doi.org/10.1007/s11340-017-0320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0320-0

Keywords

Navigation