Skip to main content

Advertisement

Log in

Characterization and Model of Piezoelectrochemical Energy Harvesting Using Lithium ion Batteries

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Although lithium ion battery research often focuses on electrochemical properties, lithium ion intercalation materials are also mechanically active. Essentially, these materials exhibit a mechanical-electrochemical coupling such that when a stress is applied, the voltage of the battery increases. In this work, we develop a model to study and predict the effectiveness of intercalation materials as mechanical energy harvesters. Specifically, we show that a lithium ion battery harvester can be modelled as a simple circuit and that we can make both qualitative and quantitative predictions about the effectiveness of a battery material given its intrinsic mechanical and electrochemical properties. The measured efficiency of our system, calculated from the energy output and total work input, is 0.012 ± 0.004%, and our model predicts that the maximum theoretical efficiency of the system is 2.9 ± 0.5%. In the future, this model will help us develop and study other intercalation materials that will bring the measured efficiency closer to our proposed theoretical maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramadesigan V, Northrop PWC, De S et al (2012) Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J Electrochem Soc 159:R31. doi:10.1149/2.018203jes

    Article  Google Scholar 

  2. Cannarella J, Leng CZ, Arnold CB (2014) On the coupling between stress and voltage in lithium-ion pouch cells 9115:91150K. doi:10.1117/12.2055152

  3. Muralidharan N, Carter R, Oakes L et al (2016) Strain engineering to modify the electrochemistry of energy storage electrodes. Sci Rep 6:27542. doi:10.1038/srep27542

    Article  Google Scholar 

  4. Jacques E, Lindbergh G, Zenkert D et al (2015) Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers. ACS Appl Mater Interfaces 7:13898–13904. doi:10.1021/acsami.5b02585

    Article  Google Scholar 

  5. Sheldon BW, Soni SK, Xiao X, Qi Y (2012) Stress contributions to solution thermodynamics in li-Si alloys. Electrochem Solid-State Lett 15:A9. doi:10.1149/2.016201esl

    Article  Google Scholar 

  6. Sethuraman V a, Srinivasan V, Bower a F, Guduru PR (2010) In situ measurements of stress-potential coupling in Lithiated silicon. J Electrochem Soc 157:A1253–A1261. doi:10.1149/1.3489378

    Article  Google Scholar 

  7. Sethuraman V a, Chon MJ, Shimshak M et al (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195:5062–5066. doi:10.1016/j.jpowsour.2010.02.013

    Article  Google Scholar 

  8. Massey C, McKnight G, Barvosa-Carter W, Liu P (2005) Reversible work by electrochemical intercalation of graphitic materials 5759:322–330. doi: 10.1117/12.601491

  9. Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1:93. doi:10.1038/ncomms1098

    Article  Google Scholar 

  10. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246. doi:10.1126/science.1124005

    Article  Google Scholar 

  11. Qin Y, Wang X, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813. doi:10.1038/nature06601

    Article  Google Scholar 

  12. Koka A, Sodano H a. (2014) A low-frequency energy harvester from Ultralong, vertically aligned BaTiO 3 nanowire arrays. Adv Energy Mater n/a-n/a. doi:10.1002/aenm.201301660

    Google Scholar 

  13. Cannarella J, Arnold CB (2015) Toward low-frequency mechanical energy harvesting using energy-dense Piezoelectrochemical materials. Adv Mater n/a-n/a. doi:10.1002/adma.201502974

    Google Scholar 

  14. Kim S, Choi SJ, Zhao K et al (2016) Electrochemically driven mechanical energy harvesting. Nat Commun 7:10146. doi:10.1038/ncomms10146

    Article  Google Scholar 

  15. Schiffer ZJ, Cannarella J, Arnold CB (2016) Strain derivatives for practical charge rate characterization of lithium ion electrodes. J Electrochem Soc 163:A427–A433. doi:10.1149/2.0091603jes

    Article  Google Scholar 

  16. Pharr M, Suo Z, Vlassak JJ (2013) Measurements of the fracture energy of lithiated silicon electrodes of li-ion batteries. Nano Lett 13:5570–5577. doi:10.1021/nl403197m

    Article  Google Scholar 

  17. Smith a J, Dahn JR (2012) Delta differential capacity analysis. J Electrochem Soc 159:A290. doi:10.1149/2.076203jes

    Article  Google Scholar 

  18. Cannarella J, Arnold CB (2013) Ion transport restriction in mechanically strained separator membranes. J Power Sources 226:149–155. doi:10.1016/j.jpowsour.2012.10.093

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sydney Hall for assistance with data collection. Funding provided through Princeton University and the Princeton University School of Engineering and Applied Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiffer, Z.J., Arnold, C.B. Characterization and Model of Piezoelectrochemical Energy Harvesting Using Lithium ion Batteries. Exp Mech 58, 605–611 (2018). https://doi.org/10.1007/s11340-017-0291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0291-1

Keywords

Navigation