Skip to main content
Log in

An Experimental Investigation on the Strain Rate Sensitivity of a Severely Deformed Aluminum Alloy

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The behavior of AA6063 aluminum alloy processed by expansion equal channel angular extrusion (Ex-ECAE) was investigated for various strain rates (10−1 ~ 3.2 × 103 s−1). Ex-ECAE experiments were performed at different temperatures and ram velocities. The experimental results indicated that the Ex-ECAE process remarkably increased both the strain rate sensitivity and flow stress of the material. Moreover, the apparent activation volume was significantly reduced for Ex-ECAEd samples in comparison with the annealed billets. The effects of ram velocity and temperature of the Ex-ECAE process on the product mechanical behavior were also studied by means of the response surface method. It was observed that at higher strain rates, other flow mechanisms such as viscous drag could be activated within the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Cross sectional area of bars in the split Hopkinson pressure bar

A s :

Cross sectional area of the cylindrical sample

C 0 :

Longitudinal elastic wave velocity in the split Hopkinson pressure bar

E :

Young’s modulus

F :

Helmholtz activation energy

K :

Boltzmann’s constant

l s :

Length of cylindrical sample

m :

Strain rate sensitivity

T :

Absolute temperature

V a :

Apparent activation volume

ε t :

Transmitted strain pulse in the split Hopkinson pressure bar

\( {\dot{\varepsilon}}_0 \) :

Reference normal strain rate

ε r :

Reflected strain pulse in the split Hopkinson pressure bar

ε :

Total strain

\( \dot{\varepsilon} \) :

Total strain rate

σ a :

Non-thermal component of normal stress

σ :

Total stress

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189. doi:10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  2. Suo T, Chen Y, Li Y, Wang C, Fan X (2013) Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates. Mater Sci Eng A 560:545–551. doi:10.1016/j.msea.2012.09.100

    Article  Google Scholar 

  3. Li JCM (2011) Mechanical properties of nanocrystalline materials. Pan Stanford, Singapore

    Book  Google Scholar 

  4. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556. doi:10.1016/j.pmatsci.2005.08.003

    Article  Google Scholar 

  5. Ferguson WG, Kumar A, Dorn JE (1967) Dislocation damping in aluminum at high strain rates. J Appl Phys 38(4):1863–1869. doi:10.1063/1.1709772

    Article  Google Scholar 

  6. Kumar A, Hauser FE, Dorn JE (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197. doi:10.1016/0001-6160(68)90054-0

    Article  Google Scholar 

  7. Kumar A, Kumble RG (1969) Viscous drag on dislocations at high strain rates in copper. J Appl Phys 40(9):3475–3480. doi:10.1063/1.1658222

    Article  Google Scholar 

  8. May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr Mater 53(2):189–194. doi:10.1016/j.scriptamat.2005.03.043

    Article  Google Scholar 

  9. Wei Q (2007) Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42(5):1709–1727. doi:10.1007/s10853-006-0700-9

    Article  Google Scholar 

  10. Hokka M, Kokkonen J, Seidt J, Matrka T, Gilat A, Kuokkala VT (2012) High strain rate torsion properties of ultrafine-grained aluminum. Exp Mech 52(2):195–203. doi:10.1007/s11340-011-9511-2

    Article  Google Scholar 

  11. Huskins E, Cao B, Li B, Ramesh KT (2012) Temperature-dependent mechanical response of an UFG aluminum alloy at high rates. Exp Mech 52(2):185–194. doi:10.1007/s11340-011-9565-1

    Article  Google Scholar 

  12. Guo C, Jiang F, Wu R, Zhang M (2013) Effect of strain rate on compressive mechanical properties of extruded Mg–8Li–1Al–1Ce alloy. Mater Des 49:110–115. doi:10.1016/j.matdes.2013.01.049

    Article  Google Scholar 

  13. Kapoor R, Singh JB, Chakravartty JK (2008) High strain rate behavior of ultrafine-grained Al–1.5 Mg. Mater Sci Eng A 496(1–2):308–315. doi:10.1016/j.msea.2008.05.043

    Article  Google Scholar 

  14. Li B, Joshi S, Azevedo K, Ma E, Ramesh KT, Figueiredo RB, Langdon TG (2009) Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP. Mater Sci Eng A 517(1–2):24–29. doi:10.1016/j.msea.2009.03.032

    Article  Google Scholar 

  15. Mishra A, Martin M, Thadhani NN, Kad BK, Kenik EA, Meyers MA (2008) High-strain-rate response of ultra-fine-grained copper. Acta Mater 56(12):2770–2783. doi:10.1016/j.actamat.2008.02.023

    Article  Google Scholar 

  16. Choi IC, Kim YJ, Ahn B, Kawasaki M, Langdon TG, Jang J (2014) Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22 % Al during high-pressure torsion. Scr Mater 75:102–105. doi:10.1016/j.scriptamat.2013.12.003

    Article  Google Scholar 

  17. Khakbaz F, Kazeminezhad M (2012) Strain rate sensitivity and fracture behavior of severely deformed Al–Mn alloy sheets. Mater Sci Eng A 532:26–30. doi:10.1016/j.msea.2011.10.057

    Article  Google Scholar 

  18. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676

    Article  Google Scholar 

  19. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: FCC versus BCC metals. Mater Sci Eng A 381(1–2):71–79. doi:10.1016/j.msea.2004.03.064

    Article  Google Scholar 

  20. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981. doi:10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  21. Valiev RZ (1997) Structure and mechanical properties of ultrafine-grained metals. Mater Sci Eng A 234–236:59–66. doi:10.1016/S0921-5093(97)00183-4

    Article  Google Scholar 

  22. Krausz AS, Krausz K (1996) Unified constitutive laws of plastic deformation. Elsevier Science, San Diego

    Google Scholar 

  23. Suo T, Li Y, Xie K, Zhao F, Zhang KS, Deng Q (2011) Experimental investigation on strain rate sensitivity of ultra-fine grained copper at elevated temperatures. Mech Mater 43(3):111–118. doi:10.1016/j.mechmat.2011.02.002

    Article  Google Scholar 

  24. Minitab 16 Statistical Software. State College, PA: Minitab, Inc. www.minitab.com

  25. Wang YM, Hamza AV, Ma E (2006) Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater 54(10):2715–2726. doi:10.1016/j.actamat.2006.02.013

    Article  Google Scholar 

  26. Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC (2002) Mechanical properties of cyromilled nanocrystalline Zn studied by the miniaturized disk bend test. Acta Mater 50(13):3527–3533. doi:10.1016/S1359-6454(02)00176-3

    Article  Google Scholar 

  27. Pan Z, Li Y, Wei Q (2008) Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Mater 56(14):3470–3480. doi:10.1016/j.actamat.2008.03.025

    Article  Google Scholar 

  28. Wei Q, Jiao T, Mathaudhu SN, Ma E, Hartwig KT, Ramesh KT (2003) Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE). Mater Sci Eng A 358(1–2):266–272. doi:10.1016/S0921-5093(03)00305-8

    Article  Google Scholar 

  29. Kapoor R, Chakravartty JK (2007) Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater 55(16):5408–5418. doi:10.1016/j.actamat.2007.05.049

    Article  Google Scholar 

  30. Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Mater Sci Eng A 297(1–2):111–118. doi:10.1016/S0921-5093(00)01255-7

    Article  Google Scholar 

  31. Dalla Torre FH, Pereloma EV, Davies CHJ (2006) Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes. Acta Mater 54(4):1135–1146. doi:10.1016/j.actamat.2005.10.041

    Article  Google Scholar 

  32. Wolfer WG (1999) Phonon drag dislocations at high pressures. PBD: 19 Oct 1999. doi:10.2172/793838

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sepahi-Boroujeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereshteh-Saniee, F., Sepahi-Boroujeni, S., Lahmi, S. et al. An Experimental Investigation on the Strain Rate Sensitivity of a Severely Deformed Aluminum Alloy. Exp Mech 55, 569–576 (2015). https://doi.org/10.1007/s11340-014-9968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9968-x

Keywords

Navigation