Skip to main content
Log in

How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence

  • Theory & methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

How social networks influence human behavior has been an interesting topic in applied research. Existing methods often utilized scale-level behavioral data (e.g., total number of positive responses) to estimate the influence of a social network on human behavior. This study proposes a novel approach to studying social influence that utilizes item-level behavioral measures. Under the latent space modeling framework, we integrate the two latent spaces for respondents’ social network data and item-level behavior measures into a single space we call ‘interaction map’. The interaction map visualizes the association between the latent homophily among respondents and their item-level behaviors, revealing differential social influence effects across item-level behaviors. We also measure overall social influence by assessing the impact of the interaction map. We evaluate the properties of the proposed approach via extensive simulation studies and demonstrate the proposed approach with a real data in the context of studying how students’ friendship network influences their participation in school activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. School 36 showed the lowest percentage of students receiving free or reduced lunch. Since School 36 was already selected, we chose School 44, the next one.

References

  • Abbe, E. (2018). Community detection and stochastic block models: Recent developments. Journal of Machine Learning Research, 18(177), 1–86.

    Google Scholar 

  • Barber, B. L., Eccles, J. S., & Stone, M. R. (2001). Whatever happened to the jock, the brain, and the princess? Journal of Adolescent Research, 16(5), 429–455.

    Google Scholar 

  • Block, P., Stadtfeld, C., & Snijders, T. (2019). Forms of dependence: Comparing SAOMs and ERGMs from basic principles. Sociological Methods & Research, 48(1), 202–239.

    Google Scholar 

  • Carr, C. T., & Zube, P. (2015). Network autocorrelation of task performance via informal communication within a virtual world. Journal of Media Psychology, 27(1), 33–44.

    Google Scholar 

  • Cheng, L. A., Mendonça, G., & Júnior, JCd Farias. (2014). Physical activity in adolescents: analysis of the social influence of parents and friends. Jornal de Pediatria, 90(1), 35–41.

    PubMed  Google Scholar 

  • D’Angelo, S., Murphy, T. B., & Alfo, M. (2019). Latent space modelling of multidimensional networks with application to the exchange of votes in Eurovision song contest. Annals of Applied Statistics, 13(2), 900–930.

    Google Scholar 

  • Daraganova, G., & Robins, G. (2013). Autologistic actor attribute models. Exponential Random Graph Models for Social Networks: Theory, Methods and Applications, pp. 102–114

  • Decelle, A., Krzakala, F., Moore, C., & Zdeborová, L. (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6), 066106.

    Google Scholar 

  • Dittrich, D., Leenders, R. T. A. J., & Mulder, J. (2019). Network autocorrelation modeling: A bayes factor approach for testing (multiple) precise and interval hypotheses. Sociological Methods & Research, 48(3), 642–676.

    Google Scholar 

  • Doreian, P. (1989). Network autocorrelation models: Problems and prospects. Spatial statistics: Past, present, future. pp. 369–389.

  • Eccles, J., Barber, B., Stone, M., & Hunt, J. (2003). Extracurricular activities and adolescent development. Journal of Social Issues, 59(4), 865–889.

    Google Scholar 

  • Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

    Google Scholar 

  • Feldman, A. F., & Matjasko, J. L. (2005). The role of school-based extracurricular activities in adolescent development: A comprehensive review and future directions. Review of Educational Research, 75(2), 159–210.

    Google Scholar 

  • Fienberg, S. E. (2012). A brief history of statistical models for network analysis and open challenges. Journal of Computational and Graphical Statistics, 21(4), 825–839.

    Google Scholar 

  • Fosdick, B. K., & Hoff, P. D. (2015). Testing and modeling dependencies between a network and nodal attributes. Journal of the American Statistical Association, 110(511), 1047–1056.

    PubMed  PubMed Central  Google Scholar 

  • Frank, K. A., & Xu, R. (2021). Causal inference for social network analysis. The oxford handbook of social networksOxford University Press.

    Google Scholar 

  • Frank, K. A., Zhao, Y., & Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education, 77(2), 148–171.

    Google Scholar 

  • Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81(395), 832–842.

    Google Scholar 

  • Fredricks, J. A., & Eccles, J. S. (2006). Is extracurricular participation associated with beneficial outcomes? concurrent and longitudinal relations. Developmental Psychology, 42(4), 698–713.

    PubMed  Google Scholar 

  • Fujimoto, K., Wang, P., & Valente, T. W. (2013). The decomposed affiliation exposure model: A network approach to segregating peer influences from crowds and organized sports. Network Science, 1(2), 154–169.

    PubMed  Google Scholar 

  • Gardner, M., Roth, J., & Brooks-Gunn, J. (2008). Adolescents’ participation in organized activities and developmental success 2 and 8 years after high school: Do sponsorship, duration, and intensity matter? Developmental Psychology, 44(3), 814–30.

    PubMed  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (Edition, Vol. 3). New York, NY: Chapman and Hall/CRC.

    Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.

    Google Scholar 

  • Goldsmith-Pinkham, P., & Imbens, G. W. (2013). Social networks and the identification of peer effects. Journal of Business & Economic Statistics, 31(3), 253–264.

    Google Scholar 

  • Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246–265.

    Google Scholar 

  • Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33–51.

    Google Scholar 

  • Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social network. Journal of the Royal Statistical Society, Series A, 170, 301–354.

    Google Scholar 

  • Hoff, P., Raftery, A., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 1090–1098.

    Google Scholar 

  • Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109–137.

    Google Scholar 

  • Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373), 33–50.

    Google Scholar 

  • Hunter, D. (2007). Curved exponential family models for social networks. Social Networks, 29(2), 216–230.

    PubMed  PubMed Central  Google Scholar 

  • Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248–258.

    Google Scholar 

  • Jeon, M., Jin, I. H., Schweinberger, M., & Baugh, S. (2021). Mapping unobserved item-respondent interactions: A latent space item response model with interaction map. Psychometrika, 86(2), 378–403.

    PubMed  Google Scholar 

  • Knifsend, C. A., & Graham, S. (2011). Too much of a good thing? how breadth of extracurricular participation relates to school-related affect and academic outcomes during adolescence. Journal of Youth and Adolescence, 41(3), 379–389.

    PubMed  Google Scholar 

  • Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random network models. Social Networks, 31, 204–213.

    PubMed  PubMed Central  Google Scholar 

  • Larson, R., Hansen, D., & Moneta, G. (2006). Differing profiles of developmental experiences across types of organized youth activities. Developmental Psychology, 42(5), 849–63.

    PubMed  Google Scholar 

  • Lauritzen, S., Rinaldo, A., & Sadeghi, K. (2017). Random networks, graphical models, and exchangeability. Journal of the Royal Statistical Society, Series B, 80(3), 481–508.

    Google Scholar 

  • Lee, C., & Wilkinson, D. J. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science, 4, 122.

    Google Scholar 

  • Leenders, R. T. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 21–47.

    Google Scholar 

  • Lei, J., & Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43(1), 215–237.

    Google Scholar 

  • Lu, X., & Szymanski, B. K. (2019). A regularized stochastic block model for the robust community detection in complex networks. Scientific Reports, 9, 13247.

    PubMed  PubMed Central  Google Scholar 

  • Mahoney, J. L., Cairns, B. D., & Farmer, T. W. (2003). Promoting interpersonal competence and educational success through extracurricular activity participation. Journal of Educational Psychology, 95(2), 409–418.

    Google Scholar 

  • Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531.

    Google Scholar 

  • Matias, N. C. F. (2019). Elaboración de una escala de participación en actividades extracurriculares para niños. Ciencias Psicológicas, 235–248.

  • McCabe, K., Modecki, K., & Barber, B. (2016). Participation in organized activities protects against adolescents’ risky substance use, even beyond development in conscientiousness. Journal of Youth and Adolescence, 45(11), 2292–2306.

    PubMed  Google Scholar 

  • Mercken, L., Snijders, T. A., Steglich, C., Vertiainen, E., & Vries, H. D. (2010). Smoking-based selection and influence in gender-segregated friendship networks: A social network analysis of adolescent smoking. Addiction, 105(7), 1280–1289.

    PubMed  Google Scholar 

  • Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120–126.

    Google Scholar 

  • Paluck, E. L., Shepherd, H., & Aronow, P. M. (2016). Changing climates of conflict: A social network experiment in 56 schools. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 566–571.

    PubMed  PubMed Central  Google Scholar 

  • Paluck, E. L., H. Shepherd, & P. M. Aronow (2020). Changing climates of conflict: A social network experiment in 56 schools, new jersey, 2012–2013. Inter-university Consortium for Political and Social Research.

  • Parker, A., Pallotti, F., & Lomi, A. (2021). New network models for the analysis of social contagion in organizations: An introduction to autologistic actor attribute models. Organizational Research Methods, 25(3), 513–540.

    Google Scholar 

  • Raftery, A., Niu, X., Hoff, P., & Yeung, K. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4), 909–919.

    Google Scholar 

  • Rastelli, R., Friel, N., & Raftery, A. (2016). Properties of latent variable network models. Network Science, 4, 407–432.

    Google Scholar 

  • Ripley, R. M., Snijders, T. A. B., B’oda, Z., V"or"os, A., & Preciado, P. (2022). Manual for Siena version 4.0. Technical report, Oxford: University of Oxford, Department of Statistics; Nuffield College. R package version 1.3.14. https://www.cran.r-project.org/web/packages/RSiena/.

  • Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161–189.

    Google Scholar 

  • Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192–215.

    Google Scholar 

  • Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 1878–1915.

    Google Scholar 

  • Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The Annals of Applied Statistics, 11(3), 1217–1244.

    PubMed  PubMed Central  Google Scholar 

  • Scott, D., Dam, I., & Wilton, R. (2012). Investigating the effects of social influence on the choice to telework. Environment and Planning A, 44(5), 1016–1031.

    Google Scholar 

  • Sewell, D. K. (2017). Network autocorrelation models with egocentric data. Social Networks, 49, 113–123.

    Google Scholar 

  • Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 1646–1657.

    Google Scholar 

  • Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., & Guo, R. (2015). The Independent Cascade and Linear Threshold Models (pp. 35–48). Springer.

    Google Scholar 

  • Sijtsema, J. J., Ojanen, T., Veenstra, R., Lindenberg, S., Hawley, P. H., & Little, T. D. (2010). Forms and functions of aggression in adolescent friendship selection and influence: A longitudinal social network analysis. Social Development, 19(3), 515–534.

    Google Scholar 

  • Simpkins, S. D., Schaefer, D. R., Price, C. D., & Vest, A. E. (2013). Adolescent friendships, bmi, and physical activity: Untangling selection and influence through longitudinal social network analysis. Journal of Research on Adolescence, 23(3), 537–549.

    Google Scholar 

  • Snijders, T. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31(1), 361–395.

    Google Scholar 

  • Snijders, T. (2017). Stochastic actor-oriented models for network dynamics. Annual Review of Statistics and Its Application, 4, 343–363.

    Google Scholar 

  • Snijders, T., Bunt, G. G., & Steglich, C. (2010). Introduction to actor-based models for network dynamics. Social Networks, 32(1), 44–60.

    Google Scholar 

  • Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329–393.

    Google Scholar 

  • Sun, J., & Tang, J. (2011). A survey of models and algorithms for social influence analysis. In C. C. Aggarwal (Ed.), Social network data analytics (pp. 177–214). Springer.

    Google Scholar 

  • Sweet, T., & Adhikari, S. (2020). A latent space network model for social influence. Psychometrika, 85(2), 251–274.

    PubMed  Google Scholar 

  • Urberg, K. A., Değirmencioğlu, S. M., & Pilgrim, C. (1997). Close friend and group influence on adolescent cigarette smoking and alcohol use. Developmental Psychology, 33(5), 834–844.

    PubMed  Google Scholar 

  • Valente, T.W. (2005). Network models and methods for studying the diffusion of innovations. In Models and methods in social network analysis, (pp. 98–116). Cambridge University Press.

  • Vitale, M. P., Porzio, G. C., & Doreian, P. (2016). Examining the effect of social influence on student performance through network autocorrelation models. Journal of Applied Statistics, 43(1), 115–127.

    Google Scholar 

  • Wang, S. S., Paul, S., & De Boeck, P. (2019). Joint latent space model for social networks with multivariate attributes. arXiv:1910.12128.

  • Zhang, A. Y., & Zhou, H. H. (2016). Minimax rates of community detection in stochastic block models. The Annals of Statistics, 44(5), 2252–2280.

    Google Scholar 

  • Zheng, K., Padman, R., Krackhardt, D., Johnson, M. P., & Diamond, H. S. (2010). Social networks and physician adoption of electronic health records: Insights from an empirical study. Journal of the American Medical Informatics Association, 17(3), 328–336.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the editor, associate editor, and reviewers for their constructive com- ments. This work was supported by the National Research Foundation of Korea [Grant Number NRF 2020R1A2C1A01009881 and RS-2023-00217705; Basic Science Research Program awarded to IHJ] and the Yonsei University Research Grant of 2022 [Grant Number 2022-22-0439 awarded to JAP].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Hoon Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jin, I.H. & Jeon, M. How Social Networks Influence Human Behavior: An Integrated Latent Space Approach for Differential Social Influence. Psychometrika 88, 1529–1555 (2023). https://doi.org/10.1007/s11336-023-09934-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-023-09934-5

Keywords

Navigation