Skip to main content
Log in

Effect of continuous positive airway pressure treatment on Th17/Treg imbalance in patients with obstructive sleep apnea and a preliminary study on its mechanism

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Obstructive sleep apnea (OSA) can be considered a chronic inflammatory disease that impacts all bodily systems, including the immune system. This study aims to assess the Th17/Treg pattern in patients with OSA and the effect of continuous positive airway pressure (CPAP) treatment.

Methods

OSA patients and healthy controls were recruited. OSA patients recommended for CPAP treatment were followed up for three months. Flow cytometry was employed to determine the proportion of Th17 and Treg cells. Real-time quantitative polymerase chain reaction (PCR) and western blotting were utilized to detect the mRNA and protein levels of receptor-related orphan receptor γt (RORγt) and forkhead/winged helix transcription factor (Foxp3), respectively, in peripheral blood mononuclear cells (PBMCs). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the serum levels of interleukin-17 (IL-17), IL-6, transforming growth factor-β1 (TGF-β1), and hypoxia-induced factor-1α (HIF-1α).

Results

A total of 56 OSA patients and 40 healthy controls were recruited. The proportion of Th17 cells, Th17/Treg ratio, mRNA and protein levels of RORγt, and serum IL-17, IL-6, and HIF-1α levels were higher in OSA patients. Conversely, the proportion of Treg cells, mRNA and protein levels of Foxp3, and serum TGF-β1 levels were decreased in OSA patients. The proportion of Th17 and Treg cells in OSA can be predicted by the apnea hypopnea index (AHI), IL-6, TGF-β1 and, HIF-1α. 30 moderate-to-severe OSA patients were adherent to three-month CPAP treatment, with improved Th17/Treg imbalance, IL-17, IL-6, TGF-β1, and HIF-1α levels compared to pre-treatment values.

Conclusion

There was a Th17/Treg imbalance in OSA patients. The prediction of Th17 and Treg cell proportions in OSA can be facilitated by AHI, as well as serum IL-6, TGF-β1, and HIF-1α levels. Furthermore, CPAP treatment can potentially improve the Th17/Treg imbalance and reduce proinflammatory cytokines in OSA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed in this study are available upon reasonable request from the corresponding author.

References

  1. Kirsch DB (2020) Obstructive Sleep Apnea. Continuum (Minneap Minn) 26(4):908–928

    PubMed  Google Scholar 

  2. Siska PJ, Rathmell JC (2015) T cell metabolic fitness in antitumor immunity. Trends Immunol 36(4):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng Y, Wang Z, Deng L et al (2015) Modulation of STAT3 and STAT5 activity rectifies the imbalance of Th17 and Treg cells in patients with acute coronary syndrome. Clin Immunol 157(1):65–77

    Article  CAS  PubMed  Google Scholar 

  4. He X, Liang B, Gu N (2020) Th17/Treg Imbalance and Atherosclerosis. Dis Markers 31(2020):8821029

    Google Scholar 

  5. Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 13(6):668–677

    Article  CAS  PubMed  Google Scholar 

  6. Lee GR (2018) The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci 19(3):730

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  7. Ye J, Liu H, Zhang G et al (2012) The treg/th17 imbalance in patients with obstructive sleep apnoea syndrome. Mediators Inflamm 2012:815308

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reale M, Velluto L, Di Nicola M et al (2020) Cholinergic Markers and Cytokines in OSA Patients. Int J Mol Sci 21(9):3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL-17 Family of Cytokines in Health and Disease. Immunity 50(4):892–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong W, Ma X (2016) Regulation of Interleukin-17 Production. Adv Exp Med Biol 941:139–166

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Xu P, Han L et al (2015) Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt. J Immunol 194(9):4094–4097

    Article  CAS  PubMed  Google Scholar 

  12. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  CAS  PubMed  Google Scholar 

  13. Grebenciucova E, VanHaerents S (2023) Interleukin 6: at the interface of human health and disease. Front Immunol 28(14):1255533

    Article  Google Scholar 

  14. Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moniz S, Biddlestone J, Rocha S (2014) Grow2: the HIF system, energy homeostasis and the cell cycle. Histol Histopathol 29(5):589–600

    CAS  PubMed  Google Scholar 

  16. Nagao A, Kobayashi M, Koyasu S et al (2019) HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int J Mol Sci 20(2):238

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sacramento JF, Ribeiro MJ, Rodrigues T et al (2016) Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respir Physiol Neurobiol 228:30–38

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Goebel JR, Li C et al (2020) Therapeutic effects of CPAP on cognitive impairments associated with OSA. J Neurol 267(10):2823–2828

    Article  PubMed  Google Scholar 

  19. Domagała-Kulawik J, Osińska I, Piechuta A et al (2015) T, B, and NKT Cells in Systemic Inflammation in Obstructive Sleep Apnoea. Mediators Inflamm 2015:161579

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gaoatswe G, Kent BD, Corrigan MA et al (2015) Invariant Natural Killer T Cell Deficiency and Functional Impairment in Sleep Apnea: Links to Cancer Comorbidity. Sleep 38(10):1629–1634

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steiropoulos P, Kotsianidis I, Nena E et al (2009) Long-term effect of continuous positive airway pressure therapy on inflammation markers of patients with obstructive sleep apnea syndrome. Sleep 32(4):537–543

    Article  PubMed  PubMed Central  Google Scholar 

  22. Léger D, Stepnowsky C (2020) The economic and societal burden of excessive daytime sleepiness in patients with obstructive sleep apnea. Sleep Med Rev 51:101275

    Article  PubMed  Google Scholar 

  23. Cartwright RD (2014) Alcohol and NREM parasomnias: evidence versus opinions in the international classification of sleep disorders, 3rd edition. J Clin Sleep Med. 10(9):1039–40

  24. Engleman HM, Wild MR (2003) Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS). Sleep Med Rev 7(1):81–99

    Article  PubMed  Google Scholar 

  25. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845–858

    Article  CAS  PubMed  Google Scholar 

  26. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8(4):345–350

    Article  CAS  PubMed  Google Scholar 

  27. Ni K, Zhao L, Wu J et al (2015) Th17/Treg balance in children with obstructive sleep apnea syndrome and the relationship with allergic rhinitis. Int J Pediatr Otorhinolaryngol 79(9):1448–1454

    Article  PubMed  Google Scholar 

  28. Douglas RM, Haddad GG (2008) Can O2 dysregulation induce premature aging? Physiology (Bethesda) 23:333–349

    CAS  PubMed  Google Scholar 

  29. Gaur P, Qadir GA, Upadhyay S et al (2012) Skewed immunological balance between Th17 (CD4(+)IL17A (+)) and Treg (CD4 (+)CD25 (+)FOXP3 (+)) cells in human oral squamous cell carcinoma. Cell Oncol (Dordr) 35(5):335–343

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka T, Narazaki M, Kishimoto T (2018) Interleukin (IL-6) Immunotherapy. Cold Spring Harb Perspect Biol 10(8):a028456

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pesce B, Soto L, Sabugo F et al (2013) Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol 171(3):237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narazaki M, Tanaka T, Kishimoto T (2017) The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol 13(6):535–551

    Article  CAS  PubMed  Google Scholar 

  33. Wali SO, Manzar MD, Abdelaziz MM (2021) et al. Putative associations between inflammatory biomarkers, obesity, and obstructive sleep apnea. Ann Thorac Med. 16(4):329–336

  34. De Luca CG, Pachêco-Pereira C, Aydinoz S et al (2015) Biomarkers associated with obstructive sleep apnea and morbidities: a scoping review. Sleep Med 16(3):347–357

    Article  Google Scholar 

  35. Bessho R, Takiyama Y, Takiyama T et al (2019) Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 9(1):14754

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Dang EV, Barbi J, Yang HY et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu C, Wang H, Zhu C et al (2020) Plasma expression of HIF-1α as novel biomarker for the diagnosis of obstructive sleep apnea-hypopnea syndrome. J Clin Lab Anal 34(12):e23545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lajoie AC, Kaminska M (2021) Cognitive profiles in obstructive sleep apnea and their relationship with intermittent hypoxemia and sleep fragmentation. J Clin Sleep Med 17(2):337

    Article  PubMed  PubMed Central  Google Scholar 

  39. Salman LA, Shulman R, Cohen JB (2020) Obstructive Sleep Apnea, Hypertension, and Cardiovascular Risk: Epidemiology, Pathophysiology, and Management. Curr Cardiol Rep 22(2):6

    Article  PubMed  Google Scholar 

  40. Dyugovskaya L, Lavie P, Hirsh M et al (2005) Activated CD8+ T-lymphocytes in obstructive sleep apnoea. Eur Respir J 25(5):820–828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank each and every participant for contributing their time to this study. We would also like to thank all the doctors and nurses in our department.

Funding

This study was supported by the National Natural Science Foundation of China (81970086, 82001490) and the National Key Clinical Specialty Construction Projects of China (2012–650).

Author information

Authors and Affiliations

Authors

Contributions

Chong Shen: Data Collection, Data Analysis, Writing-Original draft. Dandan Zong: Methodology, Data Curation. Yating Peng: Data Curation, Writing-review & editing. Li Zhou: Methodology, Writing-Review & Editing. Ting Liu: Methodology. Ruoyun Ouyang: Conceptualization, Writing-Review & Editing, Supervision. All authors gave final approval of the version to be published and have agreed on the journal to which the article has been submitted.

Corresponding author

Correspondence to Ruoyun Ouyang.

Ethics declarations

Competing interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Zong, D., Peng, Y. et al. Effect of continuous positive airway pressure treatment on Th17/Treg imbalance in patients with obstructive sleep apnea and a preliminary study on its mechanism. Sleep Breath (2024). https://doi.org/10.1007/s11325-024-02997-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11325-024-02997-3

Keywords

Navigation