Skip to main content
Log in

Metabolic changes through hypoxia in humans and in yeast as a comparable cell model

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

In several investigations on mountaineers under moderate hypoxia, at altitudes between 2,500 m and 4,500 m, weight loss occurs, fat levels in the serum and insulin resistance (in diabetic mountaineers) are reduced. Animal studies with different time dosage regimens of hypoxia in animal cages revealed different and partly confusing results regarding fat metabolism under hypoxia.

Hypotheses

Hypothesis for the change in glucose and fat metabolism include a HIF promoted higher leptin rate under hypoxia and an increased glucose transport in peripheral organs.

Discussion

This short review discusses some of the different investigations in this topic. In a second part it is shown how studies of metabolism in yeast cells with an upregulated glycolysis in the cell itself under hypoxic conditions could help to better understand metabolic changes under hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13:129–132

    Article  Google Scholar 

  2. Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1998) Operation Everest II: nutrition and body composition. J Appl Physiol 65:2545–2551

    Google Scholar 

  3. Hannon JP, Klain GJ, Sudman DM (1976) Nutritional aspects of high-altitude exposure in women. AM J Clin Nutr 29:604–13

    CAS  PubMed  Google Scholar 

  4. Kayser B (1994) Nutrition and energetics of exercise at altitude. Theory and possible practical implications. Sports Med 17:309–32

    Article  CAS  PubMed  Google Scholar 

  5. Schobersberger W., Schmid P, Lechleitner M. (2003) Austrian Moderate Altitude Study 2000 (AMAS (2000) The effects of moderate altitude (1700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. Eur J Appl Physiol 88:506–514

    Google Scholar 

  6. Greie S, Humpeler E, Gunga HC, Koralewski E, Klingler A, Mittermayr M, Fries D, Lechleitner M, Hoertnagl H, Hoffmann G, Strauss-Blasche G, Schobersberger W (2006) Improvement of metabolic syndrome markers through altitude specific hiking vacations. J Endocrinol Invest 29(6):497–504

    CAS  PubMed  Google Scholar 

  7. Armelini F (1997) The effects of high altitude trecking in body composition and resting metabolic rate. Horm Metabol Res 29:458–461

    Article  Google Scholar 

  8. Boyer J, Blume FD (1984) Weight loss and changes in body composition at high altitude. J Appl Physiol 57:1580–1585

    CAS  PubMed  Google Scholar 

  9. Netzer NC, Chytra R, Küpper T (2008) Low Intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath 12(2):129–134

    Article  PubMed  Google Scholar 

  10. Simler N, Grosfeld A, Peinequin A (2006) Leptin receptor –deficient obese Zucker Rats reduce their food intake in response to hypobaric hypoxia. Am J Physiol Endocrinol Metab 290(3):591–597

    Article  Google Scholar 

  11. Tschopp M (1998) Raised leptin concentrations at higher altitude associated with loss of appetite. Lancet 352:1119–1120

    Article  Google Scholar 

  12. Yingzhong Y, DromaY RG, Kubo K (2006) Regulation of body weight by leptin with special reference to hypoxia induced regulation. Intern Med 45(16):941–946

    Article  PubMed  Google Scholar 

  13. Grosfeld A, Andre J (2002) Hypoxia inducible factor 1 transactivates the human leptin gene promoter. J Biol Chem 277(45):42953–7

    Article  CAS  PubMed  Google Scholar 

  14. Sifiakas NM, Anthonisen NR, Georgopoulos D (eds) (2003) Acute exacerbations of Chronic Pulmonary Disease. Informa Health Care, p 292

  15. Boussaida A, Zalleg D, Buossaida S, Zaouali M, Feki Y, Zbidi A, Tabka Z (2006) Leptin, its implication in physical exercise and training: a short review. J Sports Science Med, pp 172-181

  16. Iioka Y, Tatsumi K, Sugito K (2002) Effects of insulin-like growth factor on weight gain in chronic hypoxic rats. J Cardiovasc Pharmacol 39:636–642

    Article  CAS  PubMed  Google Scholar 

  17. Azevedo JL, Carey JO (1995) Hypoxia stimulates glucose transport in insulin- resistant human skeletal muscle. Diabetes 44:695–698

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Bosch-Marce M, Nanayakkara A (2006) Altered metabolic response to intermittent hypoxia in mice with partial deficiency of hypoxia inducible factor 1 alpha. Physiol Genomics 25:450–457

    Article  CAS  PubMed  Google Scholar 

  19. Beall CM, Laskowski D (2001) Pulmonary nitric oxide in mountain dwellers. Nature 414:411–412

    Article  CAS  PubMed  Google Scholar 

  20. Beall CM, Blangero J (1994) Major gene for percent of oxygen saturation of arterial haemoglobin in Tibetan highlanders. Am J Phys Anthropol 95:271–276

    Article  CAS  PubMed  Google Scholar 

  21. Jarzab J, Chwist-Nowak A, Rozentryt P, Chwist J (2005) Pathomechanism of cachexia in chronic obstructive pulmonary disease. Wiad Lek 58:647–651

    PubMed  Google Scholar 

  22. Boutin AT, Johnson RS (2007) Waiting to inhale: HIF-1 modulates aerobic respiration. Cell 129:29–30

    Article  CAS  PubMed  Google Scholar 

  23. Burke PV, Poyton RO (1998) Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. J Exp Biol 201:1163–1175

    CAS  PubMed  Google Scholar 

  24. Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3:1166–1178

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  PubMed  Google Scholar 

  26. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  CAS  PubMed  Google Scholar 

  27. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  28. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 98:9630–9635

    Article  CAS  PubMed  Google Scholar 

  29. Ha N, Hellauer K, Turcotte B (1996) Mutations in target DNA elements of yeast HAP1 modulate its transcriptional activity without affecting DNA binding. Nucleic Acids Res 24:1453–1459

    Article  CAS  PubMed  Google Scholar 

  30. Kastaniotis AJ, Mennella TA, Konrad C, Torres AM, Zitomer RS (2000) Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Mol Cell Biol 20:7088–7098

    Article  CAS  PubMed  Google Scholar 

  31. Kastaniotis AJ, Zitomer RS (2000) Rox1 mediated repression. Oxygen dependent repression in yeast. Adv Exp Med Biol 475:185–195

    Article  CAS  PubMed  Google Scholar 

  32. Klinkenberg LG, Mennella TA, Luetkenhaus K, Zitomer RS (2005) Combinatorial repression of the hypoxic genes of Saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Eukaryot Cell 4:649–660

    Article  CAS  PubMed  Google Scholar 

  33. Shen C, Lancaster CS, Shi B, Guo H, Thimmaiah P, Bjorgnsti MA (2007) Tor signaling is a determinant of cell survival in response to DNA damage. Mol Cell Biol 20:7007–7017

    Article  Google Scholar 

Download references

Conflict of interest statement

Both authors declare that they have no conflict of interest involved in this paper and no financial support by third parties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus C. Netzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netzer, N.C., Breitenbach, M. Metabolic changes through hypoxia in humans and in yeast as a comparable cell model. Sleep Breath 14, 221–225 (2010). https://doi.org/10.1007/s11325-010-0342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-010-0342-7

Keywords

Navigation