Skip to main content

Advertisement

Log in

Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF.

Procedures

Bayesian probability theory-based parameter estimation and model selection were used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, cervical cancer DCE-MRI data.

Results

When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., had a higher posterior probability) in 80 % of the voxels compared to the direct use of a single R-AIF. Maps of spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, such as cervical cancer, are accessible with the cL-AIF approach.

Conclusions

The cL-AIF method, which estimates unique local-AIF amplitude and arrival time for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords estimates of uncertainties for each model parameter, via posterior probability density functions, and voxel-wise comparison across methods/models, via model selection in data modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  2. Naish JH, Kershaw LE, Buckley DL et al (2009) Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 61:1507–1514

    Article  PubMed  Google Scholar 

  3. Leuthardt EC, Duan C, Kim MJ et al (2016) Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One 11:e0148613. doi:10.1371/journal.pone.0148613

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027

    Article  PubMed  Google Scholar 

  5. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  6. Semple SIK, Harry VN, Parkin DE, Gilbert FJ (2009) A combined pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging predicts response to chemoradiation in locally advanced cervical cancer. Int J Radiat Oncol 75:611–617

    Article  CAS  Google Scholar 

  7. Parker GJM, Roberts C, Macdonald A et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000

    Article  PubMed  Google Scholar 

  8. Port RE, Knopp MV, Brix G (2001) Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn Reson Med 45:1030–1038

    Article  CAS  PubMed  Google Scholar 

  9. Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22:718–722

    Article  PubMed  Google Scholar 

  10. Schmitt M, Viallon M, Thelen M, Schreiber WG (2002) Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study. Magn Reson Med 47:787–793

    Article  PubMed  Google Scholar 

  11. Murase K, Yamazaki Y, Miyazaki S (2004) Deconvolution analysis of dynamic contrast-enhanced data based on singular value decomposition optimized by generalized cross validation. Magn Reson Med Sci MRMS Off J Jpn Soc Magn Reson Med 3:165–175

    Google Scholar 

  12. Wu O, Østergaard L, Koroshetz WJ et al (2003) Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 50:856–864

    Article  PubMed  Google Scholar 

  13. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 44:466–473

    Article  CAS  Google Scholar 

  14. Rose SE, Janke AL, Griffin M et al (2004) Improved prediction of final infarct volume using bolus delay–corrected perfusion-weighted MRI implications for the ischemic penumbra. Stroke 35:2466–2471

    Article  PubMed  Google Scholar 

  15. Korporaal JG, van den Berg CA, Jeukens CR et al (2010) Dynamic contrast-enhanced CT for prostate cancer: relationship between image noise, voxel size, and repeatability 1. Radiology 256:976–984

    Article  PubMed  Google Scholar 

  16. van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging J Mang Reson Imaging 22:704–709

    Article  Google Scholar 

  17. Fluckiger JU, Schabel MC, DiBella EV (2009) Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn Reson Med 62:1477–1486

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fluckiger JU, Schabel MC, DiBella EVR (2010) Toward local arterial input functions in dynamic contrast-enhanced MRI. J Magn Reson Imaging 32:924–934

    Article  PubMed  Google Scholar 

  19. Lee JJ, Bretthorst GL, Derdeyn CP et al (2010) Dynamic susceptibility contrast MRI with localized arterial input functions. Magn Reson Med 63:1305–1314

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duan C, Kallehauge JF, Bretthorst GL et al (2017) Are complex DCE-MRI models supported by clinical data? Magn Reson Med 77:1329–1339

    Article  PubMed  Google Scholar 

  21. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press

  22. Kallehauge JF, Tanderup K, Duan C et al (2014) Tracer kinetic model selection for dynamic contrast-enhanced magnetic resonance imaging of locally advanced cervical cancer. Acta Oncol Stockh Swed 53:1064–1072

    Article  CAS  Google Scholar 

  23. Sharma P, Socolow J, Patel S et al (2006) Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging 23:323–330

    Article  PubMed  Google Scholar 

  24. Donaldson SB, West CML, Davidson SE et al (2010) A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 63:691–700

    Article  Google Scholar 

  25. Kallehauge J, Nielsen T, Haack S et al (2013) Voxelwise comparison of perfusion parameters estimated using dynamic contrast enhanced (DCE) computed tomography and DCE-magnetic resonance imaging in locally advanced cervical cancer. Acta Oncol 52:1360–1368

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by funding from the Alvin J. Siteman Comprehensive Cancer Center (P30 CA091842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel R. Garbow.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Kallehauge, J.F., Pérez-Torres, C.J. et al. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF. Mol Imaging Biol 20, 150–159 (2018). https://doi.org/10.1007/s11307-017-1090-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1090-x

Key words

Navigation