Skip to main content

Advertisement

Log in

Synthesis and Evaluation of a Zr-89-Labeled Monoclonal Antibody for Immuno-PET Imaging of Amyloid-β Deposition in the Brain

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the in vitro and in vivo characteristics of [89Zr]JRF/AβN/25, a radiolabeled monoclonal antibody directed against amyloid-β (Aβ).

Procedures

JRF/AβN/25 was labeled with 89Zr following modification with desferal. The affinity of the tracer for Aβ1–40 was determined in a saturation binding assay. In vitro stability was evaluated, and in vivo plasma stability and biodistribution of [89Zr]Df-Bz-JRF/AβN/25 were determined in wild-type mice. To evaluate whether the antibody can cross the blood-brain barrier, brain uptake in wild-type mice was additionally assessed by ex vivo autoradiography.

Results

[89Zr]Df-Bz-JRF/AβN/25 was obtained in an average radiochemical yield of 50 % and a radiochemical purity of >97 %. A saturation binding assay demonstrated specific binding of [89Zr]Df-Bz-JRF/AβN/25 to Aβ1–40 with nanomolar affinity. The tracer was stable in buffer and proved to be stable in vivo with >92 % intact monoclonal antibody (mAb) remaining in the plasma at 48 h post injection. A biodistribution study showed a slow blood clearance with no significant accumulation of activity in any of the organs. Furthermore, [89Zr]Df-Bz-JRF/AβN/25 demonstrated modest brain penetration, which slowly decreased in time. This cerebral uptake was confirmed by ex vivo autoradiography.

Conclusions

[89Zr]Df-Bz-JRF/AβN/25 binds with high affinity to Aβ1–40. The tracer displays an acceptable in vivo stability and is able to cross the blood-brain barrier. [89Zr]Df-Bz-JRF/AβN/25 might therefore be a potential candidate for in vivo imaging of Aβ deposition in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Nordberg A (2011) Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther 3:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nordberg A, Rinne J, Kadir A, Långström B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6:78–87

    Article  CAS  PubMed  Google Scholar 

  3. Lemere C (2013) Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegeneration 8:36

    Article  Google Scholar 

  4. McLean D, Cooke MJ, Albay R et al (2013) Positron emission tomography imaging of fibrillar parenchymal and vascular amyloid-β in TgCRND8 mice. ACS Chem Neurosci 4:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McLean D, Cooke MJ, Wang Y et al (2012) Anti-amyloid-β-mediated positron emission tomography imaging in Alzheimer’s disease mouse brains. PLoS One 7:e51958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karran E, Mercken M, Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  7. Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465

    Article  CAS  PubMed  Google Scholar 

  8. Hickey JL, Lim S, Hayne DJ et al (2013) Diagnostic imaging agents for Alzheimer’s disease: copper radiopharmaceuticals that target Aβ plaques. J Am Chem Soc 135:16120–16132

    Article  CAS  PubMed  Google Scholar 

  9. Klunk W, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  10. Ikonomovic M, Klunk W, Abrahamson E et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Article  PubMed  PubMed Central  Google Scholar 

  11. Magnusson K, Sehlin D, Syvänen S et al (2013) Specific uptake of an amyloid-β protofibril-binding antibody-tracer in AβPP transgenic mouse brain. J Alzheimers Dis 37:29–40

    CAS  PubMed  Google Scholar 

  12. Yu YJ, Zhang Y, Kenrick M et al (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3:84ra44

    Article  PubMed  Google Scholar 

  13. Vandermeeren M, Geraerts M, Pype S et al (2001) The functional γ-secretase inhibitor prevents production of amyloid β 1–34 in human and murine cell lines. Neurosci Lett 315:145–148

    Article  CAS  PubMed  Google Scholar 

  14. Mathews PM, Jiang Y, Schmidt SD et al (2002) Calpain activity regulates the cell surface distribution of amyloid precursor protein: inhibition of calpains enhances endosomal generation of β-cleaved C-terminal APP fragments. J Biol Chem 277(39):36415–36424

    Article  CAS  PubMed  Google Scholar 

  15. Holland JP, Caldas-Lopes E, Divilov V et al (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5:e8859

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vosjan MJ, Perk LR, Visser GW et al (2010) Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 5:739–743

    Article  CAS  PubMed  Google Scholar 

  17. Perk LR, Vosjan MJ, Visser GW et al (2010) p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging 37:250–259

    Article  CAS  PubMed  Google Scholar 

  18. Verel I, Visser GW, Boellaard R et al (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44:1271–1281

    CAS  PubMed  Google Scholar 

  19. Radde R, Bolmont T, Kaeser SA et al (2006) Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abou DS, Ku T, Smith-Jones PM (2011) In vivo biodistribution and accumulation of 89Zr in mice. Nucl Med Biol 38:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischer G, Seibold U, Schirrmacher R et al (2013) 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 18:6469–6490

    Article  CAS  PubMed  Google Scholar 

  22. Zeglis BM, Davis CB, Aggeler R et al (2013) Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem 24:1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holland JP, Divilov V, Bander NH et al (2010) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deri MA, Ponnala S, Zeglis BM et al (2014) Alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 57:4849–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhai C, Summer D, Rangger C et al (2015) Novel bifunctional cyclic chelator for 89 Zr labeling–radiolabeling and targeting properties of RGD conjugates. Mol Pharm 12(6):2142–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guérard F, Lee Y-S, Tripier R et al (2013) Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun 49(10):1002–1004

    Article  Google Scholar 

  27. Prins ND, Scheltens P (2013) Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther 5(6):56

    Article  PubMed  PubMed Central  Google Scholar 

  28. Panza F, Logroscino G, Imbimbo BP, Solfrizzi V (2014) Is there still any hope for amyloid-based immunotherapy for Alzheimer’s disease? Current Opinion Psychiatry 27(2):128–137

    Article  Google Scholar 

  29. Banks WA, Terrell B, Farr SA et al (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23:2223–2226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Joana Ramalho (Janssen Pharmaceutica) for her support with the in vitro binding assays and to Philippe Joye and Caroline Berghmans (Molecular Imaging Center Antwerp) for their support with the in vivo experiments. We also want to thank Annemie Van Eetveldt (Translational Neurosciences, University of Antwerp) for her help with the brain autoradiography studies. This work was supported in part by the Agency for Innovation by Science and Technology (IWT) grant 42/FA020000/5970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie wyffels.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. All authors contributed to the conception of the study, coordinated the experimental design, and contributed to the writing and proofreading of the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fissers, J., Waldron, AM., De Vijlder, T. et al. Synthesis and Evaluation of a Zr-89-Labeled Monoclonal Antibody for Immuno-PET Imaging of Amyloid-β Deposition in the Brain. Mol Imaging Biol 18, 598–605 (2016). https://doi.org/10.1007/s11307-016-0935-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0935-z

Key words

Navigation