Skip to main content
Log in

Bioluminescence Imaging of Colonization and Clearance Dynamics of Brucella Suis Vaccine Strain S2 in Mice and Guinea Pigs

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The goal of this study was to develop a plasmid-based lux bio-reporter for use to obtain in vivo images of Brucella suis vaccine strain 2 (B.suis S2) infection with high resolution and good definition.

Procedures

The pBBR-lux (pBBR1MCS-2-lxCDABE) plasmid that carries the luxCDABE operon was introduced into B. suis S2 by electroporation yielding B. suis S2-lux. The spatial and temporal transit of B. suis S2 in mice and guinea pigs was monitored by bioluminescence imaging.

Results

The plasmid pBBR-lux is stable in vivo and does not appear to impact the virulence or growth of bacteria. This sensitive luciferase reporter could represent B. suis S2 survival in real time. B. suis S2 mainly colonized the lungs, liver, spleen, and uterus in mice and guinea pigs as demonstrated by bioluminescence imaging.

Conclusion

The plasmid-based lux bioreporter strategy can be used to obtain high resolution in vivo images of B. suis S2 infection in mice and guinea pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foster G, Osterman BS, Godfroid J et al (2007) Brucella ceti sp nov and Brucella pinnipedialis sp nov for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57:2688–2693

    Article  CAS  PubMed  Google Scholar 

  2. Scholz HC, Hubalek Z, Sedlacek I et al (2008) Brucella microti sp nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. Microbiology 58:375–382

    CAS  Google Scholar 

  3. Scholz HC, Nockler K, Gollner C et al (2010) Brucella inopinata sp nov., isolated from a breast implant infection. Int J Syst Evol Microbiol. Microbiology 60:801–808

    CAS  Google Scholar 

  4. He YQ (2012) Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front Cell Infect Microbiol 2:17

    Article  CAS  Google Scholar 

  5. Xavier MN, Paixao TA, Poester FP et al (2009) Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J Comp Pathol 140:149–157

    Article  CAS  PubMed  Google Scholar 

  6. Corbel MJ (1997) Brucellosis: an overview. Emerg Infect Dis 3:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doganay M, Aygen B (2003) Human brucellosis: an overview. Elsevier Ltd, pp 173–182

  8. Schurig GG, Sriranganathan N, Corbel MJ (2002) Brucellosis vaccines: past, present and future. Vet Microbiol 90:479–496

    Article  CAS  PubMed  Google Scholar 

  9. Jiang H, Fan MG, Mi JC et al (2013) MLVA genotyping of Brucella melitensis and Brucella abortus isolates from different animal species and humans and identification of Brucella suis vaccine strain S2 from cattle in China. PLoS One 8, e76332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grillo MJ, Blasco JM, Gorvel JP et al (2012) What have we learned from brucellosis in the mouse model? Vet Res 43:29–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Close DM, Xu T, Sayler GS, Ripp S (2011) In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel) 11:180–206

    Article  CAS  Google Scholar 

  12. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247

    Article  CAS  PubMed  Google Scholar 

  13. Close D, Xu T, Smartt A et al (2012) The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors (Basel) 12:732–752

    Article  CAS  Google Scholar 

  14. Rajashekara G, Glover DA, Banai M et al (2006) Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice. Infect Immun 74:2925–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rajashekara G, Glover DA, Krepps M, Splitter GA (2005) Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol 7:1459–1473

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Connor MG, Pennington JM, Lawrenz MB (2012) Development of bioluminescent bioreporters for in vitro and in vivo tracking of Yersinia pestis. PLoS One 7, e47123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Li Z, Dong X et al (2015) Development of Bioluminescent Cronobacter sakazakii ATCC 29544 in a Mouse Model. J Food Prot 78:1007–1012

    Article  CAS  PubMed  Google Scholar 

  18. Bosseray N, Plommet M (1990) Brucella suis S2, Brucella melitensis Rev. 1 and Brucella abortus S19 living vaccines: residual virulence and immunity induced against three Brucella species challenge strains in mice. Vaccine 8:462–468

    Article  CAS  PubMed  Google Scholar 

  19. Blasco JM, Marín C, de Jiménez Bagüés MP, Barberán M (1993) Efficacy of Brucella suis strain 2 vaccine against Brucella ovis in rams. Vaccine 11:1291–1294

    Article  CAS  PubMed  Google Scholar 

  20. Pardon P, Marly J (1976) Resistance of Brucella abortus infected mice to intravenous or intraperitoneal Brucella reinfection. Ann Immunol (Paris) 127:57–70

    CAS  Google Scholar 

  21. Gonzalez D, Iriarte M, Marin CM et al (2008) Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 3, e2760

    Article  PubMed  PubMed Central  Google Scholar 

  22. Plommet M, Plommet AM (1988) Reactivation of a residual Brucella abortus 19 vaccine infection in mice by a virulent challenge or by injection of brucellin or of Brucella lipopolysaccharide. Ann Rech Vet 19:245–251

    CAS  PubMed  Google Scholar 

  23. Plommet M, Plommet AM (1988) Virulence of Brucella: bacterial growth and decline in mice. Annales de recherches vétérinaires Annals of veterinary research 19:65

    CAS  PubMed  Google Scholar 

  24. Grilló MJ, Bosseray N, Blasco JM (2000) In vitro markers and biological activity in mice of seed lot strains and commercial Brucella melitensis Rev 1 and Brucella abortus B19 vaccines. Biologicals 28:119–127

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this study came from the National Project of Infectious Diseases (contract no. 2012ZX10004-502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qian or Zhiping Xia.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Additional information

Xiwen Wang and Zhiping Li contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Z., Li, B. et al. Bioluminescence Imaging of Colonization and Clearance Dynamics of Brucella Suis Vaccine Strain S2 in Mice and Guinea Pigs. Mol Imaging Biol 18, 519–526 (2016). https://doi.org/10.1007/s11307-015-0925-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0925-6

Key words

Navigation