Skip to main content

Advertisement

Log in

Peptide Arrays for Development of PDGFRβ Affine Molecules

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Peptide arrays represent an attractive method for identification of amino acid motifs that bind to target structures. Spotting derivatives of the linear peptide platelet-derived growth factor receptor (PDGFR)-P1, which has been identified to bind the extracellular domain of the platelet-derived growth factor receptor beta, allows the synchronous investigation of the target affinity of numerous ligands.

Procedures

A peptide array randomizing PDGFR-P1 was constructed by replacement of each amino acid by all 20 natural amino acids. Incubation of the array with PDGFRβ and fibroblast growth factor receptor as negative control target was performed. Selected derivatives and fragments of PDGFR-P1 were chemically synthesized, radiolabeled, and evaluated in cell-based assays, using human pancreatic carcinoma BxPC3 and human breast cancer MCF7 cells.

Results

Binding capacity was increased for the derivate yG2 by exchange of 7S to 7R. Competition experiments demonstrated a binding decrease with increasing competitor concentration. Serum stability of yG2 was improved compared to the native ligand.

Conclusion

Peptide arrays were successfully applied for the improvement of the PDGFRβ binding peptide PDGFR-P1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fredriksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15:197–204

    Article  PubMed  CAS  Google Scholar 

  2. Habenicht AJ, Salbach P, Janssen-Timmen U, Blattner C, Schettler G (1990) Platelet-derived growth factor—a growth factor with an expanding role in health and disease. Klin Wochenschr 68:53–59

    Article  PubMed  CAS  Google Scholar 

  3. Ross R, Bowen-Pope DF, Raines EW (1990) Platelet-derived growth factor and its role in health and disease. Philos Trans R Soc Lond B Biol Sci 327:155–169

    Article  PubMed  CAS  Google Scholar 

  4. Paulsson J, Sjoblom T, Micke P et al (2009) Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol 175:334–341

    Article  PubMed  Google Scholar 

  5. Thorarinsdottir HK, Santi M, McCarter R et al (2008) Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res 14:3386–3394

    Article  PubMed  CAS  Google Scholar 

  6. Weigel MT, Dahmke L, Schem C et al (2010) In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer 10:412

    Article  PubMed  Google Scholar 

  7. Taeger J, Moser C, Hellerbrand C et al (2011) Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol Cancer Ther 10:2157–2167

    Article  PubMed  CAS  Google Scholar 

  8. Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49:1364–1376

    Article  PubMed  CAS  Google Scholar 

  9. Haberkorn U, Eisenhut M, Altmann A, Mier W (2008) Endoradiotherapy with peptides—status and future development. Curr Med Chem 15:219–234

    Article  PubMed  CAS  Google Scholar 

  10. Askoxylakis V, Marr A, Altmann A et al (2012) Peptide based targeting of the platelet derived growth factor receptor beta. Mol Imaging Biol. doi:10.1007/s11307-012-0578-7

  11. Chung HW, Wen J, Lim JB, Bang S, Park SW, Song SY (2009) Radiosensitization effect of STI-571 on pancreatic cancer cells in vitro. Int J Radiat Oncol Biol Phys 75:862–869

    Article  PubMed  CAS  Google Scholar 

  12. Crim JW, Garczynski SF, Brown MR (2002) Approaches to radioiodination of insect neuropeptides. Peptides 23:2045–2051

    Article  PubMed  CAS  Google Scholar 

  13. Rana S, Nissen F, Marr A et al (2012) Optimization of a novel peptide ligand targeting human carbonic anhydrase IX. PLoS One 7:e38279

    Article  PubMed  CAS  Google Scholar 

  14. Dikmans A, Beutling U, Schmeisser E, Thiele S, Frank R (2006) SC2: a novel process for manufacturing multipurpose high-density chemical microarrays. QSAR Comb Sci 25:1069–1080

    Article  CAS  Google Scholar 

  15. Newton J, Deutscher SL (2008) Phage peptide display. In: Semmler W, Schwaiger M (eds) Molecular imaging II, handbook of experimental pharmacology. Springer, Berlin, pp 145–163

  16. Marr A, Markert A, Altmann A, Askoxylakis V, Haberkorn U (2011) Biotechnology techniques for the development of new tumor specific peptides. Methods 55:215–222

    Article  PubMed  CAS  Google Scholar 

  17. Askoxylakis V, Zitzmann-Kolbe S, Zoller F et al (2011) Challenges in optimizing a prostate carcinoma binding peptide, identified through the phage display technology. Molecules 16:1559–1578

    Article  PubMed  CAS  Google Scholar 

  18. Liu S, Liu Z, Chen K et al (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of alphavbeta3 integrin expression. Mol Imaging Biol 12:530–538

    Article  PubMed  Google Scholar 

  19. Di Cianni A, Carotenuto A, Brancaccio D et al (2010) Novel octreotide dicarba-analogues with high affinity and different selectivity for somatostatin receptors. J Med Chem 53:6188–6197

    Article  PubMed  Google Scholar 

  20. Hruby VJ (2002) Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov 1:847–858

    Article  PubMed  CAS  Google Scholar 

  21. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2:1333–1349

    Article  PubMed  CAS  Google Scholar 

  22. Fischer PM (2003) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept Sci 4:339–356

    Article  PubMed  CAS  Google Scholar 

  23. Zoller F, Schwaebel T, Markert A, Haberkorn U, Mier W (2012) Engineering and functionalization of the disulfide-constrained miniprotein Min-23 as a scaffold for diagnostic application. ChemMedChem 7:237–247

    Article  PubMed  CAS  Google Scholar 

  24. Volkmer R, Tapia V, Landgraf C (2012) Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 586:2780–2786

    Article  PubMed  CAS  Google Scholar 

  25. Bock I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A (2011) Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. BMC Biochem 12:48

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project has been financed by the Federal Ministry of Education and Research (BMBF) of Germany (Project MOBITECH-BIOTRACE, Nr.: 13N10269). Vasileios Askoxylakis received financial support by the Medical Faculty of the University of Heidelberg.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Askoxylakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marr, A., Nissen, F., Maisch, D. et al. Peptide Arrays for Development of PDGFRβ Affine Molecules. Mol Imaging Biol 15, 391–400 (2013). https://doi.org/10.1007/s11307-013-0616-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0616-0

Key words

Navigation