Skip to main content

Advertisement

Log in

A comprehensive protocol for multiplatform metabolomics analysis in patient-derived skin fibroblasts

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Patient-derived skin fibroblasts offer a unique translational model to study molecular mechanisms of multiple human diseases. Metabolomics profiling allows to track changes in a broad range of metabolites and interconnected metabolic pathways that could inform on molecular mechanisms involved in disease development and progression, and on the efficacy of therapeutic interventions. Therefore, it is important to establish standardized protocols for metabolomics analysis in human skin fibroblasts for rigorous and reliable metabolic assessment.

Objectives

We aimed to develop an optimized protocol for concurrent measure of the concentration of amino acids, acylcarnitines, and components of the tricarboxylic acid (TCA) cycle in human skin fibroblasts using gas (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS).

Methods

The suitability of four different methods of cell harvesting on the recovery of amino acids, acylcarnitines, and TCA cycle metabolites was established using GC/MS and LC/MS analytical platforms. For each method, metabolite stability was determined after 48 h, 2 weeks and 1 month of storage at − 80 °C.

Results

Harvesting cells in 80% methanol solution allowed the best recovery and preservation of metabolites. Storage of samples in 80% methanol up to 1  month at − 80 °C did not significantly impact metabolite concentrations.

Conclusion

We developed a robust workflow for metabolomics analysis in human skin fibroblasts suitable for a high-throughput multiplatform analysis. This method allows a direct side-by-side comparison of metabolic changes in samples collected at different time that could be used for studies in large patient cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this publication. All raw data collected in this study was uploaded to the Metabolomics Workbench: NIH Data Repository (website: https://www.metabolomicsworkbench.org/).

References

  • Cao, B., Aa, J., Wang, G., Wu, X., Liu, L., Li, M., et al. (2011). GC-TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization. Analytical and Bioanalytical Chemistry, 400, 2983–2993.

    Article  CAS  PubMed  Google Scholar 

  • Chace, D. H., Diperna, J. C., Mitchell, B. L., Sgroi, B., Hofman, L. F., & Naylor, E. W. (2001). Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clinical Chemistry, 47, 1166–1182.

    CAS  PubMed  Google Scholar 

  • Chrysanthopoulos, P. K., Goudar, C. T., & Klapa, M. I. (2010). Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering. Metabolic Engineering, 12, 212–222.

    Article  CAS  PubMed  Google Scholar 

  • Danielsson, A. P., Moritz, T., Mulder, H., & Spegel, P. (2010). Development and optimization of a metabolomic method for analysis of adherent cell cultures. Analytical Biochemistry, 404, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Deberardinis, R. J., & Thompson, C. B. (2012). Cellular metabolism and disease: What do metabolic outliers teach us? Cell, 148, 1132–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dettmer, K., Nurnberger, N., Kaspar, H., Gruber, M. A., Almstetter, M. F., & Oefner, P. J. (2011). Metabolite extraction from adherently growing mammalian cells for metabolomics studies: Optimization of harvesting and extraction protocols. Analytical and Bioanalytical Chemistry, 399, 1127–1139.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, T., Kudva, Y. C., Persson, X. M., Schenck, L. A., Ford, G. C., Singh, R. J., et al. (2016). Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. Journal of Clinical Endocrinology and Metabolism, 101, 1023–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.

    Article  CAS  PubMed  Google Scholar 

  • Guasch-FERRE, M., Hruby, A., Toledo, E., Clish, C. B., Martinez-Gonzalez, M. A., Salas-Salvado, J., et al. (2016). Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care, 39, 833–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J., Gagnon, S., Eckle, T., & Borchers, C. H. (2013). Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis, 34, 2891–2900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez Bort, J. A., Shanmukam, V., Pabst, M., Windwarder, M., Neumann, L., Alchalabi, A., et al. (2014). Reduced quenching and extraction time for mammalian cells using filtration and syringe extraction. Journal of Biotechnology, 182–183, 97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoore, R. V., Coyle, R., Staton, C. A., Brown, N. J., & Vaidyanathan, S. (2017). Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231. Analyst, 142, 2038–2049.

    Article  CAS  PubMed  Google Scholar 

  • Khan, H., Alhomida, S. A., Habib, S., Ali Khan, A., Ola, M., Siddiqui, N. J., et al. (2014). Blood carnitine as a biomarker for acute myocardial infarction. Biomedical Research, 25, 63–66.

    CAS  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    Article  CAS  PubMed  Google Scholar 

  • Kruger, N. J. (1994). The Bradford method for protein quantitation. Methods in Molecular Biology, 32, 9–15.

    CAS  PubMed  Google Scholar 

  • Lanza, I. R., Zhang, S., Ward, L. E., Karakelides, H., Raftery, D., & Nair, K. S. (2010). Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE, 5, e10538.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecuyer, L., Victor-Bala, A., Deschasaux, M., Bouchemal, N., Nawfal-Triba, M., Vasson, M. P., et al. (2018). NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. International Journal of Epidemiology, 47, 484–494.

    Article  PubMed  Google Scholar 

  • Lodeiro, M., Ibanez, C., Cifuentes, A., Simo, C., & Cedazo-Minguez, A. (2014). Decreased cerebrospinal fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early stages of Alzheimer’s disease. Journal of Alzheimer’s Disease, 41, 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X., & Li, L. (2017). Metabolomics of small numbers of cells: Metabolomic profiling of 100, 1000, and 10000 human breast cancer cells. Analytical Chemistry, 89, 11664–11671.

    Article  CAS  PubMed  Google Scholar 

  • Mamer, O., Gravel, S. P., Choiniere, L., Chenard, V., St-Pierre, J., & Avizonis, D. (2013). The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS. Metabolomics, 9, 1019–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martano, G., Delmotte, N., Kiefer, P., Christen, P., Kentner, D., Bumann, D., et al. (2015). Fast sampling method for mammalian cell metabolic analyses using liquid chromatography-mass spectrometry. Nature Protocols, 10, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Muschet, C., Moller, G., Prehn, C., de Angelis, M. H., Adamski, J., & Tokarz, J. (2016). Removing the bottlenecks of cell culture metabolomics: Fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method. Metabolomics, 12, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunnari, J., & Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell, 148, 1145–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, M. J., Ponce, D. P., Osorio-Fuentealba, C., Behrens, M. I., & Quintanilla, R. A. (2017). Mitochondrial bioenergetics is altered in fibroblasts from patients with sporadic alzheimer’s disease. Frontiers in Neuroscience, 11, 553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puchalska, P., Martin, S. E., Huang, X., Lengfeld, J. E., Daniel, B., Graham, M. J., et al. (2019). Hepatocyte-macrophage acetoacetate shuttle protects against tissue fibrosis. Cell Metabolism, 29(383–398), e7.

    Google Scholar 

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience, 2, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ser, Z., Liu, X., Tang, N. N., & Locasale, J. W. (2015). Extraction parameters for metabolomics from cultured cells. Analytical Biochemistry, 475, 22–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibbani, K., Fahed, A. C., Al-Shaar, L., Arabi, M., Nemer, G., Bitar, F., et al. (2014). Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clinical Genetics, 85, 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., et al. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6, 19118–19131.

    PubMed  PubMed Central  Google Scholar 

  • Sorrentino, V., Menzies, K. J., & Auwerx, J. (2018). Repairing mitochondrial dysfunction in disease. Annual Review of Pharmacology and Toxicology, 58, 353–389.

    Article  CAS  PubMed  Google Scholar 

  • Toledo, J. B., Arnold, M., Kastenmuller, G., Chang, R., Baillie, R. A., Han, X., et al. (2017). Metabolic network failures in Alzheimer’s disease-A biochemical road map. Alzheimers Dement, 13, 965–984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trushina, E., Dutta, T., Persson, X. M., Mielke, M. M., & Petersen, R. C. (2013). Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS ONE, 8, e63644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, J. M., & Trushina, E. (2017). Application of metabolomics in alzheimer’s disease. Frontiers in Neurology, 8, 719.

    Article  PubMed  Google Scholar 

  • Wu, J., Wuolikainen, A., Trupp, M., Jonsson, P., Marklund, S. L., Andersen, P. M., et al. (2016). NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Metabolomics, 12, 101.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health NIEHS, NIA, NINDS (Grant Numbers R01ES020715, RF1AG 55549, R01NS107265) and Mayo Clinic Metabolomics Core (NIDDK Grant Number U24DK100469); Mayo Clinic Clinomics; and Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology

Author information

Authors and Affiliations

Authors

Contributions

JW, XP, DS, IL, and ET contributed to the design of this study, data analysis and interpretation. JW conducted the experiments and performed the majority of the data analysis. DS and XP conducted metabolomics profiling. JW and ET wrote the manuscript. All authors edited the manuscript and approved the final version.

Corresponding author

Correspondence to Eugenia Trushina.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All ethical guidelines and procedures established by the Mayo Clinic Institutional Review Board for the use of human skin fibroblasts were followed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkins, J., Sakrikar, D., Petterson, XM. et al. A comprehensive protocol for multiplatform metabolomics analysis in patient-derived skin fibroblasts. Metabolomics 15, 83 (2019). https://doi.org/10.1007/s11306-019-1544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1544-z

Keywords

Navigation