Skip to main content
Log in

High resolution-magic angle spinning (HR-MAS) NMR-based metabolomic fingerprinting of early and recurrent hepatocellular carcinoma

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In order to elucidate the metabolite changes associated with hepatocellular carcinoma (HCC) oncogenesis and progression, we compared the profiles obtained by 1D proton HRMAS NMR spectroscopy of 51 needle biopsies (14 primary nodules, 14 recurrent, and 23 paired cirrhotic specimens). The diagnosis of HCC was based on 2 concordant imaging techniques and was confirmed by histology in 20 cases. Spectroscopy was performed using a Bruker AVANCE II 600 spectrometer. One-dimensional proton spectra were acquired using water-suppressed (noesygppr) pulse and spin-echo CPMG sequences. Signals were assigned by BBIOREFCODE and were confirmed by HSQC. Statistics was based on the SIMCA P package. Orthogonal projection to latent structure (OPLS-DA) showed a clear separation between tumor and cirrhosis. This difference was maintained when the analysis of paired samples from primary to recurrent nodules was split. OPLS-DA of primary and recurrent nodules also showed a significant difference. The relationship between metabolite profile and HCC volume was evaluated comparing the spectra obtained in tumors ≤2 cm (n = 15) and in those larger than 2 cm (n = 11). Univariate comparison of the most relevant metabolites showed that: (1) increased choline, TMAO, and decreased saturated fatty acids differentiate HCC from the surrounding tissue; (2) increased lactate and myo-inositol differentiate recurrent from primary HCC; (3) decreased saturated fatty acids characterize large HCC nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altekruse, S. F., McGlynn, K. A., Dickie, L. A., & Kleiner, D. E. (2012). Hepatocellular carcinoma confirmation, treatment, and survival in surveillance, epidemiology, and end results registries, 1992–2008. Hepatology, 55(2), 476–482.

    Article  PubMed  Google Scholar 

  • Beyoğlu, D., Imbeaud, S., Maurhofer, O., et al. (2013). Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification. Hepatology,. doi:10.1002/hep.26350.

    PubMed Central  Google Scholar 

  • Boyault, S., Rickman, D. S., de Reyniès, A., et al. (2007). Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 45(1), 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Budhu, A., Roessler, S., Zhao, X., et al. (2013). Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology, 144(5), 1066–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20, 341–351.

    Article  Google Scholar 

  • Calvisi, D. F., Factor, V. M., & Ladu, S. (2004). Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology, 126, 1374–1386.

    Article  CAS  PubMed  Google Scholar 

  • Calvisi, D. F., Wang, C., Ho, C., et al. (2011). Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology, 140(3), 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. M., Kwon, H. J., Sohn, J., et al. (2011). Prognostic factors after early recurrence in patients who underwent curative resection for hepatocellular carcinoma. Journal of Surgical Oncology, 103(2), 148–151.

    Article  PubMed  Google Scholar 

  • Cobbold, J. F. L., & Patel, J. H. (2010). Hepatic lipid profling in chronic hepatitis C: an in vitro and in vivo proton magnetic resonance spectroscopy study. Journal of Hepatology, 52, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Forner, A., Llovet, J. M., & Bruix, J. (2012). Hepatocellular carcinoma. Lancet, 379, 1245–1255.

    Article  PubMed  Google Scholar 

  • Galons, J. B., Job, C., & Gilles, R. (1995). Increase of GPC levels in cultured mammalian cells during acidosis. Magnetic Resonance in Medicine, 33, 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Glund, K., Bhujiwalla, Z. M., & Rohen, S. M. (2011). Choline metabolism in malignant transformation. Nature Reviews Cancer, 11, 835–848.

    Google Scholar 

  • Gogvadze, V., Zhivotovski, B., & Orrenius, S. (2009). The Warburg effect and mitochondrial stability in cancer cell. Molecular Aspects of Medicine, 31, 60–74.

    Article  PubMed  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4, 551–561.

    Article  CAS  PubMed  Google Scholar 

  • Iavarone, F., Sangiovanni, A., & Forzenigo, L. V. (2010). Diagnosis of hepatocellular carcinoma in cirrhosis by dynamic contrast imaging: the importance of tumor cell differentiation. Hepatology, 52(5), 1723–1730.

    Article  PubMed  Google Scholar 

  • Livraghi, T., Meloni, F., Di Stasi, M., et al. (2008). Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology, 47(1), 82–89.

    Article  PubMed  Google Scholar 

  • López-Lázaro, M. (2008). The Warburg effect: Why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents in Medicinal Chemistry, 8, 305–312.

    Article  Google Scholar 

  • Martinez-Granados, B., Monleon, D., Martinez-Bisbal, M. C., et al. (2006). Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning 1H NMR spectroscopy. NMR in Biomedicine, 19, 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Minquez, B., Hoshida, Y., & Villanueva, A. (2011). Gene-expressione signature of vascular invasion in hepatocellular carcinoma. Journal of Hepatology, 55(6), 1325–1331.

    Article  Google Scholar 

  • Negrini, S., Gorgoulis, V. G., & Halozenetis, T. D. (2010). Genomic instability- an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Ng, D. J. Y., Pasikanti, K. K., & Chan, E. C. Y. (2011). Trend analysis of Metabolomics and systematic review of metabolomics-derived cancer marker metabolites. Metabolomics, 7, 155–178.

    Article  CAS  Google Scholar 

  • Paris, D., Melck, D., Stocchero, M., D’Apolito, O., Calemma, R., Castello, G., et al. (2010). Monitoring liver alterations during hepatic tumorigenesis by NMR profiling and pattern recognition. Metabolomics, 6, 405–416.

    Article  CAS  Google Scholar 

  • Park, Y., Choi, D., Lim, H. K., et al. (2008). Growth rate of new hepatocellular carcinoma after percutaneous radiofrequency ablation: evaluation with multiphase CT. American Journal of Roentgenology, 191(1), 215–220.

    Article  PubMed  Google Scholar 

  • Rimola, J., Forner, A., Tremosini, S., et al. (2012). Non invasive diagnosis of hepatocellular carcinoma ≤2 cm in cirrhosis. Diagnostic accuracy. Journal of Hepatology, 56, 1317–1323.

    Article  PubMed  Google Scholar 

  • Roayaie, S., Obeidat, K., Sposito, C., et al. (2013). Resection of hepatocellular cancer ≤2 cm: Results from two western centers. Hepatology,. doi:10.1002/hep.25832.

    PubMed Central  Google Scholar 

  • Sangiovanni, A., Del Ninno, E., Fasani, P., et al. (2004). Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology, 126, 1005–1014.

    Article  PubMed  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures, O-PLS. Journal of Chemometrics, 16, 119–128.

    Article  CAS  Google Scholar 

  • Wiklund, S., Johansson, E., Sjöström, L., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41(Database issue), D801–D807.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Li, C., Nie, X., & Feng, X. (2007). Metabonomic studies of human hepatocellular carcinoma using high resolution magic angle spinning. Journal of Proteome Research, 6, 2605–2614.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Yang, B. H., & Tang, Z. Y. (2004). Randomized controlled trial of screening for hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 130(7), 417–422.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. F. Benevelli, Dr. A. Minoja and Dr. C. Napoli (Bruker Italy) for suggestions and discussions and Dr. L. Barberini (University of Cagliari) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Culeddu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solinas, A., Chessa, M., Culeddu, N. et al. High resolution-magic angle spinning (HR-MAS) NMR-based metabolomic fingerprinting of early and recurrent hepatocellular carcinoma. Metabolomics 10, 616–626 (2014). https://doi.org/10.1007/s11306-013-0601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0601-2

Keywords

Navigation