Skip to main content
Log in

Metabolite profiling reveals tissue- and temperature-specific metabolomic responses in thermoregulatory male florets of Dracunculus vulgaris (Araceae)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The male part of the spadix of Dracunculus vulgaris exhibits a degree of temperature regulation by inversely controlled heat production over a 20–35 °C range of tissue temperature. To clarify the effects of temperature on cellular metabolism, comparative analysis was performed using 51 metabolites from two distinct tissues (florets and pith) of thermogenic male spadices that had been temperature clamped at either 20 (to produce high respiration) or 35 °C (to produce low respiration). Principal component analysis and hierarchical clustering analysis showed that changes in metabolites in the florets, but not in the pith, were associated with temperature change. The energy charge in the florets treated at 20 °C was significantly higher than that of the florets treated at 35 °C. This indicated the presence of an increased energy-producing pathway that ultimately led to an increased level of thermogenesis at 20 °C. Intriguingly, succinate, a direct substrate for complex II in the mitochondrial respiratory chain, was the metabolite most significantly affected in our analysis, with its concentration in the florets 3.5 times higher at 20 than at 35 °C. However, the mitochondria fed with succinate showed that state 2 and 3 respirations and the capacity of the alternative and cytochrome pathways were all significantly higher at 35 than at 20 °C. Taken together, the results show that the male florets are the primary sites for temperature-induced changes in metabolomic pathways, although succinate-stimulated mitochondrial respiration, per sé, is not the control mechanism for thermoregulation in D. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albury, M. S., Elliott, C., & Moore, A. L. (2009). Towards a structural elucidation of the alternative oxidase in plants. Physiologia Plantarum, 137, 316–327.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, D. E. (1977). Cellular energy metabolism and its regulation. New York: Academic Press.

    Google Scholar 

  • Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation. III. The steady state. Journal of Biological Chemistry, 217, 409–428.

    PubMed  CAS  Google Scholar 

  • Clarke, A., & Pörtner, H. O. (2010). Temperature, metabolic power and the evolution of endothermy. Biological Reviews, 85, 703–727.

    PubMed  Google Scholar 

  • Djajanegara, I., Holtzapffel, R., Finnegan, P. M., Hoefnagel, M. H. N., Berthold, D. A., Wiskich, J. T., et al. (1999). A single amino acid change in the plant alternative oxidase alters the specificity of organic acid activation. FEBS Letters, 454, 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Elthon, T. E., Nickels, R. L., & McIntosh, L. (1989). Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiology, 89, 1311–1317.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D. G. (2011). AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes & Development, 25, 1895–1908.

    Article  CAS  Google Scholar 

  • Hardie, D. G., Carling, D., & Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annual Review of Biochemistry, 67, 821–855.

    Article  PubMed  CAS  Google Scholar 

  • Hoefnagel, M., Rich, P. R., Zhang, Q., & Wiskich, J. T. (1997). Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate. Plant Physiology, 115, 1145–1153.

    PubMed  CAS  Google Scholar 

  • Ito, K., Ogata, T., Kakizaki, Y., Elliott, C., Albury, M. S., & Moore, A. L. (2011). Identification of a gene for pyruvate-insensitive mitochondrial alternative oxidase expressed in the thermogenic appendices in Arum maculatum. Plant Physiology, 157, 1721–1732.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Onda, Y., Sato, T., Abe, Y., & Uemura, M. (2003). Structural requirements for the perception of ambient temperature signals in homeothermic heat production of skunk cabbage (Symplocarpus foetidus). Plant, Cell and Environment, 26, 783–788.

    Article  PubMed  Google Scholar 

  • Ito, K., & Seymour, R. S. (2005). Expression of uncoupling protein and alternative oxidase depends on lipid or carbohydrate substrates in thermogenic plants. Biology Letters, 1, 427–430.

    Article  PubMed  CAS  Google Scholar 

  • Kakizaki, Y., Moore, A. L., & Ito, K. (2012). Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochemical Journal, 445, 237–246.

    PubMed  CAS  Google Scholar 

  • Knutson, R. M. (1974). Heat production and temperature regulation in eastern skunk cabbage. Science, 186, 746–747.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y., Tezuka, T., et al. (2009). Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants. Metabolomics, 6, 146–155.

    Article  Google Scholar 

  • Motulsky, H., & Christopoulos, A. (2004). Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. New York: Oxford University Press.

    Google Scholar 

  • Onda, Y., Kato, Y., Abe, Y., Ito, T., Ito-Inaba, Y., Morohashi, M., et al. (2007). Pyruvate-sensitive AOX exists as a non-covalently associated dimer in the homeothermic spadix of the skunk cabbage, Symplocarpus renifolius. FEBS Letters, 581, 5852–5858.

    Article  PubMed  CAS  Google Scholar 

  • Polge, C., & Thomas, M. (2007). SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends in Plant Science, 12, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Pradet, A., & Raymond, P. (1983). Adenine nucleotide ratios and adenylate energy charge in energy metabolism. Annual Review of Plant Physiology, 34, 199–224.

    Article  CAS  Google Scholar 

  • Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., et al. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533.

    Article  PubMed  CAS  Google Scholar 

  • Ruben, J. (1995). The evolution of endothermy in mammals and birds: From physiology to fossils. Annual Review of Physiology, 57, 69–95.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R. S. (1999). Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. Journal of Experimental Botany, 50, 845–852.

    CAS  Google Scholar 

  • Seymour, R. S. (2004). Dynamics and precision of thermoregulatory responses of eastern skunk cabbage Symplocarpus foetidus. Plant, Cell and Environment, 27, 1014–1022.

    Article  CAS  Google Scholar 

  • Seymour, R. S. (2010). Scaling of heat production by thermogenic flowers: Limits to floral size and maximum rate of respiration. Plant, Cell and Environment, 33, 1474–1485.

    PubMed  Google Scholar 

  • Seymour, R. S., & Blaylock, A. J. (1999). Switching off the heater: Influence of ambient temperature on thermoregulation by eastern skunk cabbage Symplocarpus foetidus. Journal of Experimental Botany, 50, 1525–1532.

    CAS  Google Scholar 

  • Seymour, R. S., Gibernau, M., & Pirintsos, S. A. (2009). Thermogenesis of three species of Arum from Crete. Plant, Cell and Environment, 32, 1467–1476.

    Article  PubMed  Google Scholar 

  • Seymour, R. S., Lindshau, G., & Ito, K. (2010). Thermal clamping of temperature-regulating flowers reveals the precision and limits of the biochemical regulatory mechanism. Planta, 231, 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R. S., & Schultze-Motel, P. (1996). Thermoregulating lotus flowers. Nature, 383, 305.

    Article  CAS  Google Scholar 

  • Seymour, R. S. & Schultze-Motel, P. (1999). Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proceedings of the Royal Society of London. Series B: Biological Sciences, 266, 1975–1983.

    Google Scholar 

  • Seymour, R. S., White, C. R., & Gibernau, M. (2003). Environmental biology: Heat reward for insect pollinators. Nature, 426, 243–244.

    Article  PubMed  CAS  Google Scholar 

  • Silva, J. E. (2006). Thermogenic mechanisms and their hormonal regulation. Physiological Review, 86, 435–464.

    Article  CAS  Google Scholar 

  • Takahashi, H., Imamura, T., Miyagi, A., & Uchimiya, H. (2012). Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics, 8, 154–163.

    Article  CAS  Google Scholar 

  • Umbach, A. L., Ng, V. S., & Siedow, J. N. (2006). Regulation of plant alternative oxidase activity: A tale of two cysteines. Biochimica et Biophysica Acta, 1757, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., & McIntosh, L. (1997). Alternative oxidase: From gene to function. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 703–734.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., Yip, J. Y. H., & Parsons, H. L. (1999). In organello and in vivo evidence of the importance of the regulatory sulfhydryl/disulfide system and pyruvate for alternative oxidase activity in tobacco. Plant Physiology, 121, 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. M., Krab, K., Wagner, M. J., & Moore, A. L. (2008). Regulation of thermogenesis in flowering Araceae: The role of the alternative oxidase. Biochimica et Biophysica Acta, 1777, 993–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Japan Society for the Promotion of Science (JSPS) (Grant-in-Aid for Scientific Research (B) (#22405001 and #24380182), by the FY 2010 Researcher Exchange Program between JSPS and Australian Academy of Science, and by the Prime Minister’s Education Assistance Program for Japan. Support from the Australian Research Council Discovery Grant (DP0771854) is appreciated. Y.K. is supported by a Research Fellowship of the JSPS for Young Scientists. We also thank for Mick Brew who raised D. vulgaris in his garden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikukatsu Ito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 74 kb)

Supplementary material 2 (PPTX 783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Takahashi, H., Umekawa, Y. et al. Metabolite profiling reveals tissue- and temperature-specific metabolomic responses in thermoregulatory male florets of Dracunculus vulgaris (Araceae). Metabolomics 9, 919–930 (2013). https://doi.org/10.1007/s11306-013-0509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0509-x

Keywords

Navigation