Skip to main content

Advertisement

Log in

Purinergic regulation of pulmonary vascular tone

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,β-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Weibel ER (2017) Lung morphometry: the link between structure and function. Cell Tissue Res 367(3):413–426. https://doi.org/10.1007/s00441-016-2541-4

    Article  PubMed  Google Scholar 

  2. Hsia CCW, Hyde DM, Weibel ER (2016). Lung structure and the intrinsic challenges of gas exchange. Comprehensive physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc 827–95. https://doi.org/10.1002/cphy.c150028

  3. Clark A, Tawhai M (2019). Pulmonary vascular dynamics. In: Comprehensive physiology Wiley 1081–100. https://doi.org/10.1002/cphy.c180033

  4. Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G et al (2017) Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res 18:201. https://doi.org/10.1186/s12931-017-0679-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92(1):367–520

    Article  CAS  PubMed  Google Scholar 

  6. Goldenberg NM, Kuebler WM (2015). Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Comprehensive physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc 531–59. https://doi.org/10.1002/cphy.c140024

  7. Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120(1):207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726

    Article  CAS  PubMed  Google Scholar 

  8. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors - An update. Pharmacol Rev 63(1):1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev Am Physiol Soc 82:1013–1067

    CAS  Google Scholar 

  10. von Kügelgen I (2019) Pharmacology of P2Y receptors. Brain Res Bull 151:12–24. https://doi.org/10.1016/j.brainresbull.2019.03.010

    Article  CAS  Google Scholar 

  11. O’Connor SE, Dainty IA, Leff P (1991) Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci 12(C):137–41

    Article  PubMed  Google Scholar 

  12. Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192

    Article  PubMed  Google Scholar 

  13. Zimmermann H (2021) Ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 17(1):117–125

    Article  CAS  PubMed  Google Scholar 

  14. Goueli SA, Hsiao K (2019) Monitoring and characterizing soluble and membrane-bound ectonucleotidases CD73 and CD39. PLoS ONE 14(10):1–19

    Article  Google Scholar 

  15. Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. https://doi.org/10.1007/s11302-006-9003-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eckle T, Füllbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J et al (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178(12):8127–8137

    Article  CAS  PubMed  Google Scholar 

  18. Burch LH, Picher M (2006) E-NTPDases in human airways: regulation and relevance for chronic lung diseases. Purinergic Signalling 2:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR (2008) Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc 5(7):783–791. https://doi.org/10.1513/pats.200803-027HR

  20. Chootip K, Ness KF, Wang Y, Gurney AM, Kennedy C (2002) Regional variation in P2 receptor expression in the rat pulmonary arterial circulation. Br J Pharmacol 137(5):637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis CJ, Evans RJ (2001) P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38(4):332–340

    Article  CAS  PubMed  Google Scholar 

  22. Huang C, Hu J, Subedi KP, Lin AHY, Paudel O, Ran P et al (2015) Extracellular adenosine diphosphate ribose mobilizes intracellular Ca 2+ via purinergic-dependent Ca 2+ pathways in rat pulmonary artery smooth muscle cells. Cell Physiol Biochem 37(5):2043–2059

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell C, Syed NH, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343(3):755–762

    Article  CAS  PubMed  Google Scholar 

  24. Syed N-H, Tengah A, Paul A, Kennedy C (2010) Characterisation of P2X receptors expressed in rat pulmonary arteries. Eur J Pharmacol 649(1–3):342–348

    Article  CAS  PubMed  Google Scholar 

  25. Hartley SA, Kato K, Salter KJ, Kozlowski RZ (1998) Functional evidence for a novel suramin-insensitive pyrimidine receptor in rat small pulmonary arteries. Circ Res 83(9):940–946

    Article  CAS  PubMed  Google Scholar 

  26. Rubino A, Ziabary L, Burnstock G (2019) Regulation of vascular tone by UTP and UDP in isolated rat intrapulmonary arteries. Eur J Pharmacol 370(2):139–143

    Article  Google Scholar 

  27. Liu SF, McCormack DG, Evans TW, Barnes PJ (1989) Characterization and distribution of P2-purinoceptor subtypes in rat pulmonary vessels. J Pharmacol Exp Ther 251(3):1204–1210

    CAS  PubMed  Google Scholar 

  28. Henriquez M, Fonseca M, Perez-Zoghbi JF (2018) Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J Physiol 596(13):2491–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiefmann R, Islam MN, Lindert J, Parthasarathi K, Bhattacharya J (2009) Paracrine purinergic signaling determines lung endothelial nitric oxide production. Am J Physiol Cell Mol Physiol 296(6):L901–L910. https://doi.org/10.1152/ajplung.90549.2008

    Article  CAS  Google Scholar 

  30. Baek EB, Yoo HY, Park SJ, Kim HS, Kim SD, Earm YE et al (2008) Luminal ATP-induced contraction of rabbit pulmonary arteries and role of purinoceptors in the regulation of pulmonary arterial pressure. Pflügers Arch - Eur J Physiol 457(2):281–291. https://doi.org/10.1007/s00424-008-0536-z

    Article  CAS  Google Scholar 

  31. Hasséssian H, Bodin P, Burnstock G (1993) Blockade by glibenclamide of the flow-evoked endothelial release of ATP that contributes to vasodilatation in the pulmonary vascular bed of the rat. Br J Pharmacol 109(2):466–472

    Article  PubMed  Google Scholar 

  32. Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Circ Physiol 285(2):H693-700

    Article  CAS  Google Scholar 

  33. Mitchell C, Syed NIH, Gurney AM, Kennedy C (2012) A Ca 2+-dependent chloride current and Ca 2+ influx via Ca v1.2 ion channels play major roles in P2Y receptor-mediated pulmonary vasoconstriction. Br J Pharmacol 166(4):1503–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moerenhout M, Himpens B, Vereecke J (2001) Intercellular communication upon mechanical stimulation of CPAE-endothelial cells is mediated by nucleotides. Cell Calcium 29(2):125–136

    Article  CAS  PubMed  Google Scholar 

  35. Robaye B, Boeynaems JM, Communi D (1997) Slow desensitization of the human P2Y6 receptor. Eur J Pharmacol 329(2–3):231–236

    Article  CAS  PubMed  Google Scholar 

  36. Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. Ser-333 and Ser-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276(15):11939–48

    Article  CAS  PubMed  Google Scholar 

  37. Flores RV, Hernández-Pérez MG, Aquino E, Garrad RC, Weisman GA, Gonzalez FA (2005) Agonist-induced phosphorylation and desensitization of the P2Y2 nucleotide receptor. Mol Cell Biochem 280(1–2):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56:208–215

    Article  CAS  PubMed  Google Scholar 

  39. Koshimizu TA, Koshimizu M, Stojilkovic SS (1999) Contributions of the C-terminal domain to the control of P2X receptor desensitization. J Biol Chem 274(53):37651–37657

    Article  CAS  PubMed  Google Scholar 

  40. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–72. https://doi.org/10.1016/B978-0-12-385526-8.00011-4

    Article  CAS  PubMed  Google Scholar 

  41. Hasséssian H, Burnstock G (1995) Interacting roles of nitric oxide and ATP in the pulmonary circulation of the rat. Br J Pharmacol 114(4):846–850

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hakim TS, Ferrario L, Freedman JC, Carlin RE, Camporesi EM (1997) Segmental pulmonary vascular responses to ATP in rat lungs: role of nitric oxide. J Appl Physiol 82(3):852–858

    Article  CAS  PubMed  Google Scholar 

  43. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12(1):133–137

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J (2003) Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol - Hear Circ Physiol 285(2 54-2):793–803

    Article  Google Scholar 

  45. Schwiebert LM, Rice WC, Kudlow BA, Taylor AL, Schwiebert EM (2002) Extracellular ATP signaling and P2X nucleotide receptors in monolayers of primary human vascular endothelial cells. Am J Physiol - Cell Physiol 282(2 51-2):289–301

    Article  Google Scholar 

  46. Yamamoto K, Korenaga R, Kamiya A, Ando J (2000) Fluid shear stress activates Ca 2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87(5):385–391. https://doi.org/10.1161/01.RES.87.5.385

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto K, Korenaga R, Kamiya A, Qi Z, Sokabe M, Ando J (2000) P2X4 receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol - Hear Circ Physiol 279(1 48-1):285–92

    Article  Google Scholar 

  48. Mertens TCJ, Hanmandlu A, Tu L, Phan C, Collum SD, Chen NY et al (2018) Switching-off ADORA2B in vascular smooth muscle cells halts the development of pulmonary hypertension. Front Physiol 9:555

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lustig KD, Erb L, Landis DM, Hicks-Taylor CS, Zhang X, Sportiello MG et al (1992) Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochim Biophys Acta - Mol Cell Res 1134(1):61–72

    Article  CAS  Google Scholar 

  50. Qasabian RA, Schyvens C, Owe-Young R, Killen JP, Macdonald PS, Conigrave AD et al (1997) Characterization of the P2 receptors in rabbit pulmonary artery. Br J Pharmacol 120(4):553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. North RA (2016) P2X receptors. Philos Trans R Soc B Biol Sci 371(1700):20150427. https://doi.org/10.1098/rstb.2015.0427

    Article  CAS  Google Scholar 

  52. Von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61

    Article  Google Scholar 

  53. Guibert C, Pacaud P, Loirand G, Marthan R, Savineau JP (1996) Effect of extracellular ATP on cytosolic Ca2+ concentration in rat pulmonary artery myocytes. Am J Physiol 271(3 Pt 1):L450–L458

    CAS  PubMed  Google Scholar 

  54. Chootip K, Gurney AM, Kennedy C (2005) Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery. Respir Res 6(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hartley SA, Kozlowski RZ (1997) Electrophysiological consequences of purinergic receptor stimulation in isolated rat pulmonary arterial myocytes. Circ Res 80(2):170–178. https://doi.org/10.1161/01.res.80.2.170

    Article  CAS  PubMed  Google Scholar 

  56. Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V et al (2005) Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter- induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 125(4):427–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  Google Scholar 

  58. Berg J, Yang H, Jan LY (2012) Ca2+-activated Cl-channels at a glance. J Cell Sci 125(6):1367–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signalling 4(1):1–20. https://doi.org/10.1007/s11302-007-9078-7

    Article  CAS  PubMed  Google Scholar 

  60. Eichinger MR, Walker BR (1994) Segmental heterogeneity of NO-mediated pulmonary vasodilation in rats. Am J Physiol 267(2 Pt 2):H494–H499

    CAS  PubMed  Google Scholar 

  61. Liu SF, McCormack DG, Evans TW, Barnes PJ (1989) Characterization and distribution of P2-purinoceptor subtypes in rat pulmonary vessels. J Pharmacol Exp Ther 251(3):1204–1210

    CAS  PubMed  Google Scholar 

  62. Liu SF, McCormack DG, Evans TW, Barnes PJ (1989) Evidence for two P2-purinoceptor subtypes in human small pulmonary arteries. Br J Pharmacol 98(3):1014–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greenberg B, Rhoden K, Barnes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol Circ Physiol 252(2):H434–H438

    Article  CAS  Google Scholar 

  64. DinhXuan AT, Higenbottan TW, Clelland C, Pepke-Zaba J, Wells FC, Wallwork J (1990) Acetylcholine and adenosine diphosphate cause endothelium-dependent relaxation of isolated human pulmonary arteries. Eur Respir J 3(6):633–8

    Article  CAS  Google Scholar 

  65. Liu SF, Barnes PJ (1994) Role of endothelium in the control of pulmonary vascular tone. Endothelium 2(1):11–33. https://doi.org/10.3109/10623329409024631

    Article  CAS  Google Scholar 

  66. Dominguez Rieg JA, Burt JM, Ruth P, Rieg T (2015) P2Y2 receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37. Acta Physiol 213(3):628–641. https://doi.org/10.1111/apha.12446

    Article  CAS  Google Scholar 

  67. Jiménez M, Clavé P, Accarino A, Gallego D (2014) Purinergic neuromuscular transmission in the gastrointestinal tract; functional basis for future clinical and pharmacological studies. Br J Pharmacol 171:4360–4375

    Article  PubMed  PubMed Central  Google Scholar 

  68. Paquola A, Mañé N, Giron MC, Jimenez M (2019) Diadenosine tetraphosphate activates P2Y1 receptors that cause smooth muscle relaxation in the mouse colon. Eur J Pharmacol 855:160–166

    Article  CAS  PubMed  Google Scholar 

  69. Dales MO, Mitchell C, Gurney AM, Drummond RM, Kennedy C (2022) Characterisation of P2Y receptor subtypes mediating vasodilation and vasoconstriction of rat pulmonary artery using selective antagonists. Purinergic Signal 18(4):515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bowser JL, Phan LH, Eltzschig HK (2018) The hypoxia-adenosine link during intestinal inflammation. J Immunol 200(3):897–907

    Article  CAS  PubMed  Google Scholar 

  71. Eltzschig HK (2013) Extracellular adenosine signaling in molecular medicine. J Mol Med (Berl) 91(2):141–146

    Article  PubMed  Google Scholar 

  72. Aherne CM, Collins CB, Rapp CR, Olli KE, Perrenoud L, Jedlicka P et al (2018) Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation. JCI Insight 3(20):e121521

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wiklund NP, Cederqvist B, Matsuda H, Gustafsson LE (1987) Adenosine can excite pulmonary artery. Acta Physiol Scand 131(3):477–478

    Article  CAS  PubMed  Google Scholar 

  74. Szentmiklósi AJ, Ujfalusi A, Cseppentő Á, Nosztray K, Kovacs P, Szabó JZ (1995) Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 351(4):417–425. https://doi.org/10.1007/BF00169083

    Article  PubMed  Google Scholar 

  75. Roepke JE, Patterson CE, Packer CS, Rhoades RA (1991) Response of perfused lung and isolated pulmonary artery to adenosine. Exp Lung Res 17(1):25–37

    Article  CAS  PubMed  Google Scholar 

  76. Haynes Jr J, Obiako B, Thompson WJ, Downey J (1995) Adenosine-induced vasodilation: receptor characterization in pulmonary circulation. Am J Physiol 268(5 Pt 2):H1862–H1868. https://doi.org/10.1152/ajpheart.1995.268.5.H1862

  77. Pearl RG (1994) Adenosine produces pulmonary vasodilation in the perfused rabbit lung via an adenosine A2 receptor. Anesth Analg 79(1):46–51

    Article  CAS  PubMed  Google Scholar 

  78. Steinhorn RH, Morin FC, Van Wylen DG, Gugino SF, Giese EC, Russell JA (1994) Endothelium-dependent relaxations to adenosine in juvenile rabbit pulmonary arteries and veins. Am J Physiol Circ Physiol 266(5):H2001–H2006

    Article  CAS  Google Scholar 

  79. El-Kashef H, Elmazar MM, Al-Shabanah OA, Al-Bekairi AM (1999) Effect of adenosine on pulmonary circulation of rabbits. Gen Pharmacol 32(3):307–313

    Article  CAS  PubMed  Google Scholar 

  80. Mentzer RM, Rubio R, Berne R (1975) Release of adenosine by hypoxic canine lung tissue and its possible role in pulmonary circulation. Am J Physiol Content 229(6):1625–1631. https://doi.org/10.1152/ajplegacy.1975.229.6.1625

    Article  CAS  Google Scholar 

  81. Biaggioni I, King LS, Enayat N, Robertson D, Newman JH (1989) Adenosine produces pulmonary vasoconstriction in sheep. Evidence for thromboxane A2/prostaglandin endoperoxide-receptor activation. Circ Res 65(6):1516–25. https://doi.org/10.1161/01.RES.65.6.1516

    Article  CAS  PubMed  Google Scholar 

  82. Lippton HL, Hao Q, Hauth T, Hyman A (1992) Mechanisms of signal transduction for adenosine and ATP in pulmonary vascular bed. Am J Physiol 262(3 Pt 2):H926–H929

    CAS  PubMed  Google Scholar 

  83. Neely CF (1993) Purinergic responses in the feline pulmonary vascular bed. Drug Dev Res 28(3):328–335. https://doi.org/10.1002/ddr.430280326

    Article  CAS  Google Scholar 

  84. Cheng DY, Dewitt BJ, Suzuki F, Neely CF, Kadowitz PJ (1996). Adenosine A1 and A2 receptors mediate tone-dependent responses in feline pulmonary vascular bed. Am J Physiol - Hear Circ Physiol 270(1 39–1). https://doi.org/10.1152/ajpheart.1996.270.1.H200

  85. McCormack DG, Clarke B, Barnes PJ (1989) Characterization of adenosine receptors in human pulmonary arteries. Am J Physiol Circ Physiol 256(1):H41–H46

    Article  CAS  Google Scholar 

  86. Fullerton DA, Kirson LE, Jones SD, McIntyre RC (1996) Adenosine is a selective pulmonary vasodilator in cardiac surgical patients. Chest 109(1):41–46

    Article  CAS  PubMed  Google Scholar 

  87. Reid PG, Fraser AG, Watt AH, Henderson AH, Routledge PA (1990) Acute haemodynamic effects of intravenous infusion of adenosine in conscious man. Eur Heart J 11(11):1018–1028

    Article  CAS  PubMed  Google Scholar 

  88. Katsuragi T, Su C (1980) Purine release from vascular adrenergic nerves by high potassium and a calcium ionophore, A-23187. J Pharmacol Exp Ther 215(3):685–690

    CAS  PubMed  Google Scholar 

  89. Mohri K, Takeuchi K, Shinozuka K, Bjur RA, Westfalli DP (1993) Simultaneous determination of nerve-induced adenine nucleotides and nucleosides released from rabbit pulmonary artery. Anal Biochem 210(2):262–267

    Article  CAS  PubMed  Google Scholar 

  90. Husted SE, Nedergaard OA (1985) Dual inhibitory action of ATP on adrenergic neuroeffector transmission in rabbit pulmonary artery. Acta Pharmacol Toxicol (Copenh) 57(3):204–213

    Article  CAS  PubMed  Google Scholar 

  91. Hansen MA, Dutton JL, Balcar VJ, Barden JA, Bennett MR (1999) P2X (purinergic) receptor distributions in rat blood vessels. J Auton Nerv Syst 75(2–3):147–155

    Article  CAS  PubMed  Google Scholar 

  92. Alencar AKN, Pereira SL, Montagnoli TL, Maia RC, Kümmerle AE, Landgraf SS et al (2013) Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats. Br J Pharmacol 169(5):953–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Helenius MH, Vattulainen S, Orcholski M, Aho J, Komulainen A, Taimen P et al (2015) Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Cell Mol Physiol 308(10):L1046–L1057. https://doi.org/10.1152/ajplung.00340.2014

    Article  CAS  Google Scholar 

  94. Visovatti SH, Hyman MC, Bouis D, Neubig R, McLaughlin VV, Pinsky DJ (2012) Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS ONE 7(7):e40829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang W, Zhang Y, Wang W, Dai Y, Ning C, Luo R et al (2013) Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 112(11):1466–1478

    Article  CAS  PubMed  Google Scholar 

  96. Yin J, You S, Liu H, Chen L, Zhang C, Hu H et al (2017) Role of P2X7R in the development and progression of pulmonary hypertension. Respir Res 18(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  97. Aherne CM, Saeedi B, Collins CB, Masterson JC, McNamee EN, Perrenoud L et al (2015) Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 8(6):1324–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan X, Lee JW, Bowser JL, Neudecker V, Sridhar S, Eltzschig HK (2018) Targeting hypoxia signaling for perioperative organ injury. Anesth Analg 126(1):308–321

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rafehi M, Müller CE (2018) Tools and drugs for uracil nucleotide-activated P2Y receptors. Pharmacol Ther 190:24–80

    Article  CAS  PubMed  Google Scholar 

  100. Xu P, Feng X, Luan H, Wang J, Ge R, Li Z et al (2018) Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorg Med Chem 26:366–375

    Article  CAS  PubMed  Google Scholar 

  101. Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49

    Article  CAS  PubMed  Google Scholar 

  102. Abdelrahman A, Yerande SG, Namasivayam V, Klapschinski TA, Alnouri MW, El-Tayeb A et al (2020) Substituted 4-phenylthiazoles: development of potent and selective A1, A3 and dual A1/A3 adenosine receptor antagonists. Eur J Med Chem 186:111879. https://doi.org/10.1016/j.ejmech.2019.111879

    Article  CAS  PubMed  Google Scholar 

  103. Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L et al (2019) The P2-receptor-mediated Ca2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal 15(3):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Visovatti SH, Hyman MC, Goonewardena SN, Anyanwu AC, Kanthi Y, Robichaud P et al (2016) Purinergic dysregulation in pulmonary hypertension. Am J Physiol - Hear Circ Physiol 311(1):H286–H298. https://doi.org/10.1152/ajpheart.00572.2015

    Article  Google Scholar 

  105. Li LZ, Yue LH, Zhang ZM, Zhao J, Ren LM, Wang HJ et al (2020) Comparison of mRNA expression of P2X receptor subtypes in different arterial tissues of rats. Biochem Genet 58(5):677–690

    Article  CAS  PubMed  Google Scholar 

  106. Aliagas E, Muñoz-Esquerre M, Cuevas E, Careta O, Huertas D, López-Sánchez M et al (2018) Is the purinergic pathway involved in the pathology of COPD? Decreased lung CD39 expression at initial stages of COPD. Respir Res 19(1):1–10

    Article  Google Scholar 

  107. Careta O, Cuevas E, Muñoz-Esquerre M, López-Sánchez M, Pascual-González Y, Dorca J et al (2019) Imbalance in the expression of genes associated with purinergic signalling in the lung and systemic arteries of COPD patients. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Santiago Ramirez (UTHealth | The University of Texas Health Science Center at Houston) for English correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MA made substantial contributions to the conception and design of the work and data interpretation; drafted, revised, and approved the submitted version; and has agreed to be accountable.

AM made substantial contributions to the review design and data interpretation, revised and approved the submitted version of the manuscript, and has agreed to be accountable.

AG has drafted and revised the manuscript, approved the submitted version, and has agreed to be accountable.

MH made substantial contributions to the conception and design of the work and data interpretation; drafted, revised, and approved the submitted version; and has agreed to be accountable.

Corresponding author

Correspondence to Mauricio Henríquez.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alveal, M., Méndez, A., García, A. et al. Purinergic regulation of pulmonary vascular tone. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-10010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-10010-5

Keywords

Navigation