Skip to main content

Advertisement

Log in

The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

EA:

Electroacupuncture

Glu:

Glutamate

GABA:

γ-Aminobutyric acid

SP:

Substance P

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ADO:

Adenosine

R:

Receptor

RA:

Rheumatoid arthritis

eATP:

Extracellular adenosine triphosphate

NF-κB:

Nuclear transcription factor-κB

CCI:

Chronic constriction injury

SNI:

Spared nerve injury

SNL:

Spinal nerve ligation

IBD:

Inflammatory bowel disease

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

L:

Lumbar

CIA:

Collagen-induced arthritis

CFA:

Complete Freund’s adjuvant

MDA:

Malondialdehyde

CRP:

C-reactive protein

GPx:

Glutathione peroxidase

SOD:

Superoxide dismutase

GR:

Glutathione reductase

AP2M:

Adaptor protein-2 complex

CXCR3:

CXC chemokine receptor 3

PAP:

Prostatic acid phosphatase

CGRP:

Calcitonin gene-related peptide

α,β-meATP:

α, β-methylene ATP

STZ:

Streptozotocin

DNP:

Diabetic neuropathic pain

MAPK:

Mitogen-activated protein kinase

TRPV:

Transient receptor potential vanilloid

NTPDases:

Nucleoside triphosphate diphosphohydrolases

NK-1R:

Neurokinin-1 receptor

MCs:

Mast cells

CD73:

Ecto-5′-nucleotidase

AV-shA1RNA:

Short interfering RNA

p:

Phosphorylation

cAMP:

Cyclic adenosine monophosphate

CREB:

Cyclic adenosine monophosphate response element protein

ADA:

Adenosine deaminase

IFN-γ:

Interferon-γ

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

FKN:

Fractalkine

CX3CR1:

FKN receptor

BDNF:

Brain-derived neurotrophic factor

NTF3:

Neurotrophic-3

RANKL:

NF-κB ligand

PKA:

Protein kinase A

PKC:

Protein kinase C

PMA:

Phorbol 12-myristate 13-acetic acid

ERK:

Extracellular regulated protein kinases

SCDH:

Spinal cord dorsal horn

DRG:

Dorsal root ganglion

HPLC:

High-performance liquid chromatography

References

  1. Zhuang Y, Xing JJ, Li J, Zeng BY, Liang FR (2013) History of acupuncture research. Int Rev Neurobiol 111:1–23

    Article  PubMed  Google Scholar 

  2. Tang Y, Yin HY, Rubini P, Illes P (2016) Acupuncture-induced analgesia: a neurobiological basis in purinergic signaling. Neuroscientist 22(6):563–578

    Article  PubMed  Google Scholar 

  3. Zhang RY, Zhu BF, Wang LK et al (2020) Electroacupuncture alleviates inflammatory pain via adenosine suppression and its mediated substance P expression. Arq Neuropsiquiatr 78(10):617–623

    Article  PubMed  Google Scholar 

  4. Long XQ, Wang X, Ren XJ, Yu X, Tu Y, Tang YX (2016) Effect of electroacupuncture at distal and proximal acupoints on expression of spinal p 38 mitogen-activated protein kinase and cyclic adenosine 3',5'-monophosphate in rats with lumbago. Zhen ci yan jiu = Acupuncture res 41(3):202–209

    Google Scholar 

  5. Smith CA, Armour M, Lee MS, Wang LQ, Hay PJ (2018) Acupuncture for depression. Cochrane Database Syst Rev 3(3):CD004046

    PubMed  Google Scholar 

  6. Garland SN, Xie SX, DuHamel K et al (2019) Acupuncture versus cognitive behavioral therapy for insomnia in cancer survivors: a randomized clinical trial. J Natl Cancer Inst 111(12):1323–1331

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schweiger V, Secchettin E, Castellani C et al (2020) Comparison between acupuncture and nutraceutical treatment with Migratens(®) in patients with fibromyalgia syndrome: a prospective randomized clinical trial. Nutrients 12(3):821

  8. Lee HY, Kwon OJ, Kim JE et al (2018) Efficacy and safety of acupuncture for functional constipation: a randomised, sham-controlled pilot trial. BMC Complement Altern Med 18(1):186

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park JE, Sul JU, Kang K, Shin BC, Hong KE, Choi SM (2011) The effectiveness of moxibustion for the treatment of functional constipation: a randomized, sham-controlled, patient blinded, pilot clinical trial. BMC Complement Altern Med 11:124

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhi WI, Ingram E, Li SQ, Chen P, Piulson L, Bao T (2018) Acupuncture for bortezomib-induced peripheral neuropathy: not just for pain. Integr Cancer Ther 17(4):1079–1086

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dou B, Li Y, Ma J et al (2021) Role of neuroimmune crosstalk in mediating the anti-inflammatory and analgesic effects of acupuncture on inflammatory pain. Front Neurosci 15:695670

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malik S, Samaniego T, Guo ZL (2019) Adenosine receptor A(2a), but not A(1) in the rVLM participates along with opioids in acupuncture-mediated inhibition of excitatory cardiovascular reflexes. Front Neurosci 13:1049

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen XM, Xu J, Song JG, Zheng BJ, Wang XR (2015) Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 114(1):150–157

    Article  PubMed  Google Scholar 

  14. Xiao Y, Chen W, Zhong Z et al (2020) Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 127:110148

    Article  CAS  PubMed  Google Scholar 

  15. Xiang X, Wang S, Shao F et al (2019) Electroacupuncture stimulation alleviates CFA-induced inflammatory pain via suppressing P2X3 expression. Int J Mol Sci 20(13):3248

  16. Yen LT, Hsieh CL, Hsu HC, Lin YW (2017) Targeting ASIC3 for relieving mice fibromyalgia pain: roles of electroacupuncture, opioid, and adenosine. Sci Rep 7:46663

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Shen D, Shen X, Schwarz W, Grygorczyk R, Wang L (2020) P2Y13 and P2X7 receptors modulate mechanically induced adenosine triphosphate release from mast cells. Exp Dermatol 29(5):499–508

    Article  CAS  PubMed  Google Scholar 

  18. Ren Y, Chen Z, Wang R, Yu Y, Li D, He Y (2020) Electroacupuncture improves myocardial ischemia injury via activation of adenosine receptors. Purinergic Signal 16(3):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Li H, Shi C, Yang T, Xu B (2020) Electroacupuncture inhibits the activity of astrocytes in spinal cord in rats with visceral hypersensitivity by inhibiting P2Y(1) receptor-mediated MAPK/ERK signaling pathway. Evid Based Complement Alternat Med 2020:4956179

    PubMed  PubMed Central  Google Scholar 

  20. Shi Y, Dai Q, Ji B et al (2021) Electroacupuncture pretreatment prevents cognitive impairment induced by cerebral ischemia-reperfusion via adenosine A1 receptors in rats. Front Aging Neurosci 13:680706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai QX, Geng WJ, Zhuang XX et al (2017) Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors. Neural Regen Res 12(2):228–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu J, Chen XM, Zheng BJ, Wang XR (2016) Electroacupuncture relieves nerve injury-induced pain hypersensitivity via the inhibition of spinal P2X7 receptor-positive microglia. Anesth Analg 122(3):882–892

    Article  CAS  PubMed  Google Scholar 

  23. Carta S, Penco F, Lavieri R et al (2015) Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc Natl Acad Sci U S A 112(9):2835–2840

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Zheng Y, Zhou Y, Wu Q et al (2020) Effect of electroacupuncture on the expression of P2 × 4, GABAA γ 2 and long-term potentiation in spinal cord of rats with neuropathic pain. Brain Res Bull 162:1–10

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G (1971) Neural nomenclature. Nature 229(5282):282–283

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Goldman N, Chen M, Fujita T et al (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takano T, Chen X, Luo F et al (2012) Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 13(12):1215–1223

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  CAS  PubMed  Google Scholar 

  30. Su C (1983) Purinergic neurotransmission and neuromodulation. Annu Rev Pharmacol Toxicol 23:397–411

    Article  CAS  PubMed  Google Scholar 

  31. Burnstock G (2017) Introduction to the special issue on purinergic receptors. Adv Exp Med Biol 1051:1–6

    Article  CAS  PubMed  Google Scholar 

  32. Cheffer A, Castillo A, Corrêa-Velloso J et al (2018) Purinergic system in psychiatric diseases. Mol Psychiatry 23(1):94–106

    Article  CAS  PubMed  Google Scholar 

  33. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  34. Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H (2019) Purinergic receptors in neurogenic processes. Brain Res Bull 151:3–11

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira Á, Illes P, Ulrich H (2016) Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 104:272–281

    Article  CAS  PubMed  Google Scholar 

  36. Ali A, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C (2021) P2Y(2) deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 35(5):e21546

    Article  CAS  PubMed  Google Scholar 

  37. Bortolotto JW, Melo GM, Cognato Gde P, Vianna MR, Bonan CD (2015) Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol Learn Mem 118:113–119

    Article  CAS  PubMed  Google Scholar 

  38. Mo M, Eyo UB, Xie M et al (2019) Microglial P2Y12 receptor regulates seizure-induced neurogenesis and immature neuronal projections. J Neurosci 39(47):9453–9464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santiago FE, Fior-Chadi DR, Carrettiero DC (2015) Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 187:36–44

    Article  CAS  PubMed  Google Scholar 

  40. Wang A, Shi X, Yu R, Qiao B, Yang R, Xu C (2021) The P2X(7) Receptor is involved in diabetic neuropathic pain hypersensitivity mediated by TRPV1 in the rat dorsal root ganglion. Front Mol Neurosci 14:663649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Honore P, Kage K, Mikusa J et al (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99(1-2):11–19

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Dai Y, Kobayashi K et al (2012) Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur J Neurosci 36(3):2293–2301

    Article  PubMed  Google Scholar 

  43. Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–812

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Fernández D, Flores-Santibáñez F, Neira J et al (2016) Purinergic signaling as a regulator of Th17 cell plasticity. PLoS One 11(6):e0157889

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barberà-Cremades M, Baroja-Mazo A, Pelegrín P (2016) Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages. J Leukoc Biol 99(2):289–299

    Article  PubMed  Google Scholar 

  46. Mousseau M, Burma NE, Lee KY et al (2018) Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci Adv 4(8):eaas9846

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Hassenklöver T, Schulz P, Peters A, Schwartz P, Schild D, Manzini I (2010) Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles. Purinergic Signal 6(4):429–445

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blanchard C, Boué-Grabot E, Massé K (2019) Comparative embryonic spatio-temporal expression profile map of the xenopus P2X receptor family. Front Cell Neurosci 13:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salter MW, Henry JL (1987) Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat. Neuroscience 22(2):631–650

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Zhao F, Zhu L (1994) Involvement of purines in analgesia produced by weak electro-acupuncture. Zhen Ci Yan Jiu 19(1):59–62

    CAS  PubMed  Google Scholar 

  51. Zylka MJ (2010) Needling adenosine receptors for pain relief. Nat Neurosci 13(7):783–784

    Article  CAS  PubMed  Google Scholar 

  52. Lv ZY, Yang YQ, Yin LM (2021) Role of purinergic signaling in acupuncture therapeutics. Am J Chin Med 49(3):645–659

    Article  CAS  PubMed  Google Scholar 

  53. Haroutounian S, Finnerup NB (2018) Chapter 50-recommendations for pharmacologic therapy of neuropathic pain. Essentials of Pain Medicine (Fourth Edition), p 445–456.e2

  54. Wu Q, Yue J, Lin L et al (2021) Electroacupuncture may alleviate neuropathic pain via suppressing P2X7R expression. Mol Pain 17:1744806921997654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou M, Zhang Q, Huo M et al (2023) The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed Pharmacother 161:114516

    Article  CAS  PubMed  Google Scholar 

  56. Ren W, Tu W, Jiang S, Cheng R, Du Y (2012) Electroacupuncture improves neuropathic pain: adenosine, adenosine 5′-triphosphate disodium and their receptors perhaps change simultaneously. Neural Regen Res 7(33):2618–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou X, Dai W, Qin Y et al (2022) Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 26(5):991–1005

  58. Tu WZ, Cheng RD, Cheng B et al (2012) Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X(3) receptors in rat dorsal root ganglion neurons. Neurochem Int 60(4):379–386

    Article  CAS  PubMed  Google Scholar 

  59. Huang H, Chen HE, Yu WY, Huang MY, Wu QW, Lin LL (2020) Electroacupuncture at “Jiaji” (EX-B2) induced down-regulation of OX-42 and P2X4 in lumbar spinal cord contributes to its analgesic after-effect in rats with chronic constriction injury. Zhen Ci Yan Jiu 45(1):40–45

    PubMed  Google Scholar 

  60. Wang WS, Tu WZ, Cheng RD et al (2014) Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2X3 receptor in rats with chronic neuropathic pain states. J Neurosci Res 92(12):1703–1713

    Article  CAS  PubMed  Google Scholar 

  61. Yu J, Zhao C, Luo X (2013) The effects of electroacupuncture on the extracellular signal-regulated kinase 1/2/P2X3 signal pathway in the spinal cord of rats with chronic constriction injury. Anesth Analg 116(1):239–246

    Article  CAS  PubMed  Google Scholar 

  62. Cheng RD, Tu WZ, Wang WS et al (2013) Effect of electroacupuncture on the pathomorphology of the sciatic nerve and the sensitization of P2X3 receptors in the dorsal root ganglion in rats with chronic constrictive injury. Chin J Integr Med 19(5):374–379

    Article  CAS  PubMed  Google Scholar 

  63. Dai QX, Huang LP, Mo YC et al (2020) Role of spinal adenosine A1 receptors in the analgesic effect of electroacupuncture in a rat model of neuropathic pain. J Int Med Res 48(4):300060519883748

    Article  CAS  PubMed  Google Scholar 

  64. Dai QX, Li S, Ren M et al (2022) Analgesia with 5'extracellular nucleotidase-mediated electroacupuncture for neuropathic pain. Arq Neuropsiquiatr 80(3):289–295

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang M, Dai Q, Liang D et al (2018) Involvement of adenosine A1 receptor in electroacupuncture-mediated inhibition of astrocyte activation during neuropathic pain. Arq Neuropsiquiatr 76(11):736–742

    Article  PubMed  Google Scholar 

  66. Jin WJ, Zhang MX, Wang LL, Dai QX (2020) Spinal transcription factor GATA4 mediated adenosine A1 receptor activation contributes to electroacupuncture analgesia in neuropathic pain rats. Zhen Ci Yan Jiu 45(11):908–913

    PubMed  Google Scholar 

  67. Jiang SW, Lin YW, Hsieh CL (2018) Electroacupuncture at Hua Tuo Jia Ji acupoints reduced neuropathic pain and increased GABAA receptors in rat spinal cord. Evid Based Complement Alternat Med 2018:8041820

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liang Y, Gu Y, Shi R, Li G, Chen Y, Huang LM (2019) Electroacupuncture downregulates P2X3 receptor expression in dorsal root ganglia of the spinal nerve-ligated rat. Mol Pain 15:1744806919847810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng Y, Jia C, Jiang X et al (2021) Electroacupuncture effects on the P2X4R pathway in microglia regulating the excitability of neurons in the substantia gelatinosa region of rats with spinal nerve ligation. Mol Med Rep 23(3):175

  70. Wu Q, Chen J, Yue J et al (2021) Electroacupuncture improves neuronal plasticity through the A2AR/cAMP/PKA signaling pathway in SNL rats. Neurochem Int 145:104983

    Article  CAS  PubMed  Google Scholar 

  71. Xue C, Xie L, Li X, Cai J, Gu Z, Wang K (2015) Analgesic mechanism of electroacupuncture in a rat L5 spinal nerve ligation model. Exp Ther Med 9(3):987–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Du J, Fang J, Xiang X et al (2021) Effects of low- and high-frequency electroacupuncture on protein expression and distribution of TRPV1 and P2X3 in rats with peripheral nerve injury. Acupunct Med 39(5):478–490

    Article  PubMed  Google Scholar 

  73. Liu Y, Du J, Fang J et al (2021) Electroacupuncture inhibits the interaction between peripheral TRPV1 and P2X3 in rats with different pathological pain. Physiol Res 70(4):635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fei X, He X, Tai Z et al (2020) Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 16(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He XF, Wei JJ, Shou SY, Fang JQ, Jiang YL (2017) Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion. J Zhejiang Univ Sci B 18(3):239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou YF, Ying XM, He XF et al (2018) Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 14(4):359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu QQ, He XF, Ma YQ et al (2022) Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 19(1):29–41

  78. Tang HY, Wang FJ, Ma JL, Wang H, Shen GM, Jiang AJ (2020) Acupuncture attenuates the development of diabetic peripheral neuralgia by regulating P2X4 expression and inflammation in rat spinal microglia. J Physiol Sci 70(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gao YH, Li CW, Wang JY et al (2017) Effect of electroacupuncture on the cervicospinal P2X7 receptor/fractalkine/CX3CR1 signaling pathway in a rat neck-incision pain model. Purinergic Signal 13(2):215–225

    Article  CAS  PubMed  Google Scholar 

  80. Huang CP, Lin YW, Lee DY, Hsieh CL (2019) Electroacupuncture relieves CCI-induced neuropathic pain involving excitatory and inhibitory neurotransmitters. Evid Based Complement Alternat Med 2019:6784735

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tan PH, Ji J, Yeh CC, Ji RR (2021) Interferons in pain and infections: emerging roles in neuro-immune and neuro-glial interactions. Front Immunol 12:783725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K (2009) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 106(19):8032–8037

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Bai HH, Liu JP, Yang L et al (2017) Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation. Neuropharmacology 126:158–167

    Article  CAS  PubMed  Google Scholar 

  84. Phạm TL, Noh C, Neupane C et al (2022) MAO-B inhibitor, KDS2010, alleviates spinal nerve ligation-induced neuropathic pain in rats through competitively blocking the BDNF/TrkB/NR2B signaling. J Pain 23(12):2092–2109

    Article  PubMed  Google Scholar 

  85. Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008) P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 28(11):2892–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barragán-Iglesias P, Pineda-Farias JB, Cervantes-Durán C et al (2014) Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu S, Cheng H, Cui L et al (2023) Astrocytic purinergic signalling contributes to the development and maintenance of neuropathic pain via modulation of glutamate release. J Neurochem 00:1–18

  88. Inoue K (2019) Role of the P2X4 receptor in neuropathic pain. Curr Opin Pharmacol 47:33–39

    Article  CAS  PubMed  Google Scholar 

  89. Tsuda M, Shigemoto-Mogami Y, Koizumi S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783

    Article  CAS  PubMed  ADS  Google Scholar 

  90. Zhang WJ, Zhu ZM, Liu ZX (2020) The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 158:104875

    Article  CAS  PubMed  Google Scholar 

  91. Guo Y, Xu X, Huang J, Wang Z, Li Z, Liu Z (2020) The actions and mechanisms of P2X7R and p38 MAPK activation in mediating Bortezomib-induced neuropathic pain. Biomed Res Int 2020:8143754

    Article  PubMed  PubMed Central  Google Scholar 

  92. Leung L, Cahill CM (2010) TNF-alpha and neuropathic pain--a review. J Neuroinflammation 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ali U, Apryani E, Wu HY, Mao XF, Liu H, Wang YX (2020) Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway. Biomed Pharmacother 125:109898

    Article  CAS  PubMed  Google Scholar 

  94. Kwilasz AJ, Ellis A, Wieseler J et al (2018) Sustained reversal of central neuropathic pain induced by a single intrathecal injection of adenosine A(2A) receptor agonists. Brain Behav Immun 69:470–479

    Article  CAS  PubMed  Google Scholar 

  95. Huang Z, Xie N, Illes P et al (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. He L, Zhao W, Zhang L et al (2022) Modified spared nerve injury surgery model of neuropathic pain in mice. J Vis Exp (179):e63362

  97. Fang J, Du J, Xiang X et al (2021) SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 239(3):983–995

    Article  CAS  PubMed  Google Scholar 

  98. Yu J, Du J, Fang J et al (2021) The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains. Mol Pain 17:17448069211011315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ (2011) Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34(10):2220–2224

    Article  PubMed  PubMed Central  Google Scholar 

  100. He XF, Kang YR, Fei XY et al (2022) Inhibition of phosphorylated calcium/calmodulin-dependent protein kinase IIα relieves streptozotocin-induced diabetic neuropathic pain through regulation of P2X3 receptor in dorsal root ganglia. Purinergic Signal 19(1):99–111

  101. Xu GY, Li G, Liu N, Huang LY (2011) Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 7:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang JY, Zhang JL, Chen SP et al (2022) Electroacupuncture relieves hyperalgesia by regulating neuronal-glial interaction and glutamate transporters of spinal dorsal horns in rats with acute incisional neck pain. Front Neurosci 16:885107

    Article  PubMed  PubMed Central  Google Scholar 

  103. Clark AK, Malcangio M (2014) Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 8:121

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74(18):3275–3291

    Article  CAS  PubMed  Google Scholar 

  105. Hwang SM, Chung G, Kim YH, Park CK (2019) The role of maresins in inflammatory pain: function of macrophages in wound regeneration. Int J Mol Sci 20(23):5849

  106. Li Y, Yang M, Wu F et al (2019) Mechanism of electroacupuncture on inflammatory pain: neural-immune-endocrine interactions. J Tradit Chin Med 39(5):740–749

    PubMed  ADS  Google Scholar 

  107. Adly AS, Adly AS, Adly MS, Serry Z (2017) Laser acupuncture versus reflexology therapy in elderly with rheumatoid arthritis. Lasers Med Sci 32(5):1097–1103

    Article  PubMed  Google Scholar 

  108. Adly AS, Adly AS, Adly MS, Abdeen H (2021) Effects of laser acupuncture tele-therapy for rheumatoid arthritis elderly patients. Lasers Med Sci 37(1):499–504

  109. Attia AM, Ibrahim FA, Abd El-Latif NA et al (2016) Therapeutic antioxidant and anti-inflammatory effects of laser acupuncture on patients with rheumatoid arthritis. Lasers Surg Med 48(5):490–497

    Article  PubMed  Google Scholar 

  110. Zheng Y, Zuo W, Shen D et al (2021) Mechanosensitive TRPV4 channel-induced extracellular ATP accumulation at the acupoint mediates acupuncture analgesia of ankle arthritis in rats. Life (Basel, Switzerland) 11(6):513

  111. Shen D, Zheng YW, Zhang D, Shen XY, Wang LN (2021) Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 17(3):411–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang JQ, Du JY, Fang JF et al (2018) Parameter-specific analgesic effects of electroacupuncture mediated by degree of regulation TRPV1 and P2X3 in inflammatory pain in rats. Life Sci 200:69–80

    Article  CAS  PubMed  Google Scholar 

  113. Huang M, Wang X, Xing B et al (2018) Critical roles of TRPV2 channels, histamine H1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia. Sci Rep 8(1):6523

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Ye TS, Du ZH, Li ZH et al (2016) Repeated electroacupuncture persistently elevates adenosine and ameliorates collagen-induced arthritis in rats. Evid Based Complement Alternat Med 2016:3632168

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li QH, Xie WX, Li XP et al (2015) Adenosine A2A Receptors mediate anti-inflammatory effects of electroacupuncture on synovitis in mice with collagen-induced arthritis. Evid Based Complement Alternat Med 2015:809560

    PubMed  PubMed Central  Google Scholar 

  116. Du ZH, Zhang CW, Xie WX et al (2019) Adenosine A2A receptor mediates inhibition of synovitis and osteoclastogenesis after electroacupuncture in rats with collagen-induced arthritis. Evid Based Complement Alternat Med 2019:4617464

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hou T, Xiang H, Yu L et al (2019) Electroacupuncture inhibits visceral pain via adenosine receptors in mice with inflammatory bowel disease. Purinergic Signal 15(2):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu J, Yang F, Ma X, Lin J, Chen W (2022) Elderly-onset rheumatoid arthritis vs. polymyalgia rheumatica: differences in pathogenesis. Front Med (Lausanne) 9:1083879

    Article  PubMed  Google Scholar 

  119. Smolen JS, Aletaha D, Barton A et al (2018) Rheumatoid arthritis Nat Rev Dis Primers 4:18001

    Article  PubMed  Google Scholar 

  120. Saleem A, Saleem M, Akhtar MF, Shahzad M, Jahan S (2020) Moringa rivae leaf extracts attenuate complete Freund’s adjuvant-induced arthritis in Wistar rats via modulation of inflammatory and oxidative stress biomarkers. Inflammopharmacology. 28(1):139–151

    Article  CAS  PubMed  Google Scholar 

  121. Weng W, Wang F, He X, Zhou K, Wu X, Wu X (2021) Protective effect of Corynoline on the CFA induced rheumatoid arthritis via attenuation of oxidative and inflammatory mediators. Mol Cell Biochem 476(2):831–839

    Article  CAS  PubMed  Google Scholar 

  122. Andó RD, Méhész B, Gyires K, Illes P, Sperlágh B (2010) A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain. Br J Pharmacol 159(5):1106–1117

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yin HY, Fan YP, Liu J, Li DT, Guo J, Yu SG (2021) Purinergic ATP triggers moxibustion-induced local anti-nociceptive effect on inflammatory pain model. Purinergic Signal 19(1):5–12

  124. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shiozaki Y, Sato M, Kimura M, Sato T, Tazaki M, Shibukawa Y (2017) Ionotropic P2X ATP receptor channels mediate purinergic signaling in mouse odontoblasts. Front Physiol 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12(4-5):256–268

    Article  CAS  PubMed  Google Scholar 

  127. Jiang Q, Li WX, Sun JR et al (2017) Inhibitory effect of estrogen receptor beta on P2X3 receptors during inflammation in rats. Purinergic Signal 13(1):105–117

    Article  CAS  PubMed  Google Scholar 

  128. Bernier LP, Ase AR, Séguéla P (2018) P2X receptor channels in chronic pain pathways. Br J Pharmacol 175(12):2219–2230

    Article  CAS  PubMed  Google Scholar 

  129. Yang Y, Yan M, Zhang H, Wang X (2013) Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells. Exp Ther Med 6(2):459–464

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fujita T, Feng C, Takano T (2017) Presence of caffeine reversibly interferes with efficacy of acupuncture-induced analgesia. Sci Rep 7(1):3397

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  131. Liao HY, Hsieh CL, Huang CP, Lin YW (2017) Electroacupuncture attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Sci Rep 7:42531

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Wooley PH (2004) Immunotherapy in collagen-induced arthritis: past, present, and future. Am J Med Sci 327(4):217–226

    Article  PubMed  Google Scholar 

  133. Holmdahl R, Bockermann R, Bäcklund J, Yamada H (2002) The molecular pathogenesis of collagen-induced arthritis in mice--a model for rheumatoid arthritis. Ageing Res Rev 1(1):135–147

    Article  CAS  PubMed  Google Scholar 

  134. Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33(5):231–237

    Article  CAS  PubMed  Google Scholar 

  135. Sauer AV, Brigida I, Carriglio N et al (2012) Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 119(6):1428–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chan ES, Fernandez P, Cronstein BN (2007) Adenosine in inflammatory joint diseases. Purinergic Signal 3(1-2):145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zheng M, Han R, Yuan Y et al (2022) The role of Akkermansia muciniphila in inflammatory bowel disease: current knowledge and perspectives. Front Immunol 13:1089600

    Article  CAS  PubMed  Google Scholar 

  138. Da Rio L, Spadaccini M, Parigi TL et al (2023) Artificial intelligence and inflammatory bowel disease: where are we going. World J Gastroenterol 29(3):508–520

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bielefeldt K, Davis B, Binion DG (2009) Pain and inflammatory bowel disease. Inflamm Bowel Dis 15(5):778–788

    Article  PubMed  Google Scholar 

  140. Diezmos EF, Bertrand PP, Liu L (2016) Purinergic signaling in gut inflammation: the role of connexins and pannexins. Front Neurosci 10:311

    Article  PubMed  PubMed Central  Google Scholar 

  141. Song G, Fiocchi C, Achkar JP (2019) Acupuncture in inflammatory bowel disease. Inflamm Bowel Dis 25(7):1129–1139

    Article  PubMed  Google Scholar 

  142. Mabley J, Soriano F, Pacher P et al (2003) The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 466(3):323–329

    Article  CAS  PubMed  ADS  Google Scholar 

  143. Kolachala V, Ruble B, Vijay-Kumar M et al (2008) Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 155(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 81973944); the Natural Science Foundation of Tianjin (Grant No. 22JCYBJC00990); Youth Talent Promotion Project of the Tianjin Association for Science and Technology (Grant No. TJSQNTJ-2020-15); Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-D-202002); Tianjin Graduate Research Innovation Project (Grant No. 2022SKY232); TUTCM Graduate Research Innovation Project (Grant No. YJSKC-20221022).

Author information

Authors and Affiliations

Authors

Contributions

DZ and YF were responsible for the conception and design of the study. MH drafted the article. QZ, YS, and YZ were responsible for review and editing. HC and MZ reviewed and critically revised it.

Corresponding authors

Correspondence to Di Zhang or Yuxin Fang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Manuscript is approved by all authors for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, ., Zhang, Q., Si, Y. et al. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-09985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-09985-y

Keywords

Navigation