Skip to main content

Advertisement

Log in

Fibroblast growth factor 2 upregulates ecto-5′-nucleotidase and adenosine deaminase via MAPK pathways in cultured rat spinal cord astrocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenosine triphosphate (ATP) and adenosine are neurotransmitters and neuromodulators in the central nervous system. Astrocytes regulate extracellular concentration of purines via ATP release and its metabolisms via ecto-enzymes. The expression and activity of purine metabolic enzymes in astrocytes are increased under pathological conditions. We previously showed that fibroblast growth factor 2 (FGF2) upregulates the expression and activity of the enzymes ecto-5′-nucleotidase (CD73) and adenosine deaminase (ADA). Here, we further demonstrate that this occurs in concentration- and time-dependent manners in cultured rat spinal cord astrocytes and is suppressed by inhibitors of the FGF receptor as well as the mitogen-activated protein kinases (MAPKs). We also found that FGF2 increased the phosphorylation of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK, leading to the increased expression and activity of CD73 and ADA. Our findings reveal the involvement of FGF2/MAPK pathways in the regulation of purine metabolic enzymes in astrocytes. These pathways may contribute to the control of extracellular purine concentrations under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. https://doi.org/10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock G (2016) An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 104:4–17. https://doi.org/10.1016/j.neuropharm.2015.05.031

    Article  CAS  PubMed  Google Scholar 

  3. Cheffer A, Castillo ARG, Corrêa-Velloso J, Gonçalves MCB, Naaldijk Y, Nascimento IC, Burnstock G, Ulrich H (2018) Purinergic system in psychiatric diseases. Mol Psychiatry 23(1):94–106. https://doi.org/10.1038/mp.2017.188

    Article  CAS  PubMed  Google Scholar 

  4. Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, Di Iorio P (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414. https://doi.org/10.1016/S0736-5748(00)00084-8

    Article  CAS  PubMed  Google Scholar 

  5. Haskó G, Sitkovsky MV, Szabó C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157. https://doi.org/10.1016/j.tips.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  6. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  Google Scholar 

  7. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. https://doi.org/10.1007/s11302-012-9300-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wink MR, Braganhol E, Tamajusuku ASK, Casali EA, Karl J, Barreto-Chaves ML, Sarkis JJF, Battastini AMO (2003) Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochem Int 43(7):621–628. https://doi.org/10.1016/s0197-0186(03)00094-9

    Article  CAS  PubMed  Google Scholar 

  9. Wink MR, Braganhol E, Tamajusuku ASK, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AMO, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138(2):421–432. https://doi.org/10.1016/j.neuroscience.2005.11.039

    Article  CAS  PubMed  Google Scholar 

  10. Eguchi R, Akao S, Otsuguro K, Yamaguchi S, Ito S (2015) Different mechanisms of extracellular adenosine accumulation by reduction of the external Ca2+ concentration and inhibition of adenosine metabolism in spinal astrocytes. J Pharmacol Sci 128(1):47–53. https://doi.org/10.1016/j.jphs.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434. https://doi.org/10.1002/glia.20207

    Article  PubMed  Google Scholar 

  12. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MVL, Nedergaard M, Takano T (2012) Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J Neurosci 32(10):3333–3338. https://doi.org/10.1523/JNEUROSCI.1216-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye XC, Hu JX, Li L, Li Q, Tang FL, Lin S, Sun D, Sun XD, Cui GY, Mei L, Xiong WC (2018) Astrocytic lrp4 (low-density lipoprotein receptor-related protein 4) contributes to ischemia-induced brain injury by regulating ATP release and adenosine-A2AR (adenosine A2A receptor) signaling. Stroke 49(1):165–174. https://doi.org/10.1161/STROKEAHA.117.018115

    Article  CAS  PubMed  Google Scholar 

  15. Xiong W, Cao X, Zeng Y, Qin X, Zhu M, Ren J, Wu Z, Huang Q, Zhang Y, Wang M, Chen L, Turecki G, Mechawar N, Chen W, Yi G, Zhu X (2019) Astrocytic epoxyeicosatrienoic acid signaling in the medial prefrontal cortex modulates depressive-like behaviors. J Neurosci 39(23):4606–4623. https://doi.org/10.1523/JNEUROSCI.3069-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  16. Braun N, Lenz C, Gillardon F, Zimmermann M, Zimmermann H (1997) Focal cerebral ischemia enhances glial expression of ecto-5′-nucleotidase. Brain Res 766(1–2):213–226. https://doi.org/10.1016/s0006-8993(97)00559-3

    Article  CAS  PubMed  Google Scholar 

  17. Nedeljkovic N, Bjelobaba I, Subasic S, Lavrnja I, Pekovic S, Stojkov D, Vjestica A, Rakic L, Stojiljkovic M (2006) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30(6):541–546. https://doi.org/10.1016/j.cellbi.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  18. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, Ladoire S, Derangère V, Vincent J, Masson D, Robson SC, Eberl G, Pallandre JR, Borg C, Ryffel B, Apetoh L, Rébé C, Ghiringhelli F (2012) Stat3 and gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36(3):362–373. https://doi.org/10.1016/j.immuni.2011.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Bonnin N, Armandy E, Carras J, Ferrandon S, Battiston-Montagne P, Aubry M, Guihard S, Meyronet D, Foy JP, Saintigny P, Ledrappier S, Jung A, Rimokh R, Rodriguez-Lafrasse C, Poncet D (2016) MiR-422a promotes loco-regional recurrence by targeting NT5E/CD73 in head and neck squamous cell carcinoma. Oncotarget 7(28):44023–44038. https://doi.org/10.18632/oncotarget.9829

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reuss B, von Bohlen, Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313(2):139–157. https://doi.org/10.1007/s00441-003-0756-7

  21. Eguchi R, Yamaguchi S, Otsuguro K (2019) Fibroblast growth factor 2 modulates extracellular purine metabolism by upregulating ecto-5′-nucleotidase and adenosine deaminase in cultured rat spinal cord astrocytes. J Pharmacol Sci 139(2):98–104. https://doi.org/10.1016/j.jphs.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266. https://doi.org/10.1002/wdev.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18. https://doi.org/10.1038/sj.cr.7290105

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats. Br J Pharmacol 161(8):1806–1816. https://doi.org/10.1111/j.1476-5381.2010.01002.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):45e–445e. https://doi.org/10.1093/nar/29.9.e45

  26. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276(5314):955–960. https://doi.org/10.1126/science.276.5314.955

    Article  CAS  PubMed  Google Scholar 

  27. Pedram A, Razandi M, Levin ER (1998) Extracellular signal-regulated protein kinase/jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 273(41):26722–26728. https://doi.org/10.1074/jbc.273.41.26722

    Article  CAS  PubMed  Google Scholar 

  28. Adler V, Qu Y, Smith SJ, Izotova L, Pestka S, Kung HF, Lin M, Friedman FK, Chie L, Chung D, Boutjdir M, Pincus MR (2005) Functional interactions of raf and MEK with jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic ras signaling pathway. Biochemistry 44(32):10784–10795. https://doi.org/10.1021/bi050619j

    Article  CAS  PubMed  Google Scholar 

  29. Wu S, Zhang W, Ma S, Li B, Xu C, Yi P (2018) ERK1/2 and JNK signaling synergistically modulate mitogenic effect of fibroblast growth factor 2 on liver cell. Cell Biol Int 42(11):1511–1522. https://doi.org/10.1002/cbin.11043

    Article  CAS  PubMed  Google Scholar 

  30. Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinoceptor subtypes recruit different mek activators in astrocytes. Br J Pharmacol 129(5):927–936. https://doi.org/10.1038/sj.bjp.0703138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lenz G, Gonçalves D, Luo Z, Avruch J, Rodnight R, Neary JT (2001) Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. J Neurochem 77(4):1001–1009. https://doi.org/10.1046/j.1471-4159.2001.00299.x

    Article  CAS  PubMed  Google Scholar 

  32. Germack R, Dickenson JM (2004) Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 141(2):329–339. https://doi.org/10.1038/sj.bjp.0705614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sie M, den Dunnen WFA, Lourens HJ, Meeuwsen-de Boer TGJ, Scherpen FJG, Zomerman WW, Kampen KR, Hoving EW, de Bont ESJM (2015) Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through akt and erk phosphorylation in pediatric low grade astrocytoma and ependymoma. PLoS One 10(3):e0122555. https://doi.org/10.1371/journal.pone.0122555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20. https://doi.org/10.1042/bj20030407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagai H, Noguchi T, Takeda K, Ichijo H (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 40(1):1–6. https://doi.org/10.5483/bmbrep.2007.40.1.001

    Article  CAS  PubMed  Google Scholar 

  36. Kordaß T, Osen W, Eichmüller SB (2018) Controlling the immune suppressor: transcription factors and microRNAs regulating CD73/NT5E. Front Immunol 9:813. https://doi.org/10.3389/fimmu.2018.00813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fausther M, Sheung N, Saiman Y, Bansal MB, Dranoff JA (2012) Activated hepatic stellate cells upregulate transcription of ecto-5′-nucleotidase/CD73 via specific SP1 and SMAD promoter elements. Am J Physiol Gastrointest Liver Physiol 303(8):G904–G914. https://doi.org/10.1152/ajpgi.00015.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ingolia DE, Al-Ubaidi MR, Yeung CY, Bigo HA, Wright D, Kellems RE (1986) Molecular cloning of the murine adenosine deaminase gene from a genetically enriched source: identification and characterization of the promoter region. Mol Cell Biol 6(12):4458–4466. https://doi.org/10.1128/mcb.6.12.4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qureshi HY, Sylvester J, Mabrouk ME, Zafarullah M (2005) TGF-β-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol 203(2):345–352. https://doi.org/10.1002/jcp.20228

    Article  CAS  PubMed  Google Scholar 

  40. Chung J, Uchida E, Grammer TC, Blenis J (1997) STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 17(11):6508–6516. https://doi.org/10.1128/mcb.17.11.6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shinnakasu R, Yamashita M, Kuwahara M, Hosokawa H, Hasegawa A, Motohashi S, Nakayama T (2008) Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem 283(42):28216–28225. https://doi.org/10.1074/jbc.M804174200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kiyota Y, Takami K, Iwane M, Shino A, Miyamoto M, Tsukuda R, Nagaoka A (1991) Increase in basic fibroblast growth factor-like immunoreactivity in rat brain after forebrain ischemia. Brain Res 545(1–2):322–328. https://doi.org/10.1016/0006-8993(91)91307-M

    Article  CAS  PubMed  Google Scholar 

  43. Frautschy SA, Walicke PA, Baird A (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res 553(2):291–299. https://doi.org/10.1016/0006-8993(91)90837-L

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He S, Zhang T, Hong B, Peng D, Su H, Lin Z, Fang Y, Jiang K, Liu X, Li H (2014) Decreased serum fibroblast growth factor-2 levels in pre- and post-treatment patients with major depressive disorder. Neurosci Lett 579:168–172. https://doi.org/10.1016/j.neulet.2014.07.035

    Article  CAS  PubMed  Google Scholar 

  45. Becerril-Villanueva E, Pérez-Sánchez G, Alvarez-Herrera S, Girón-Pérez MI, Arreola R, Cruz-Fuentes C, Palacios L, de la Peña FR, Pavón L (2019) Alterations in the levels of growth factors in adolescents with major depressive disorder: a longitudinal study during the treatment with fluoxetine. Mediat Inflamm 2019:9130868–9130867. https://doi.org/10.1155/2019/9130868

    Article  CAS  Google Scholar 

  46. Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H (2008) Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Res 1224:63–68. https://doi.org/10.1016/j.brainres.2008.05.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC (2017) Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 66:322–331. https://doi.org/10.1016/j.bbi.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  48. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19(6):773–777. https://doi.org/10.1038/nm.3162

    Article  CAS  Google Scholar 

  49. Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S (2018) Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 32:72–83. https://doi.org/10.1016/j.ebiom.2018.05.036

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (grant number JP19K23701) and the Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Eguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All animal care and experimental protocols were approved by the Committee on Animal Experimentation, Faculty of Veterinary Medicine, Hokkaido University (no. 19-0009).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, R., Kitano, T. & Otsuguro, Ki. Fibroblast growth factor 2 upregulates ecto-5′-nucleotidase and adenosine deaminase via MAPK pathways in cultured rat spinal cord astrocytes. Purinergic Signalling 16, 519–527 (2020). https://doi.org/10.1007/s11302-020-09731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09731-0

Keywords

Navigation