Skip to main content
Log in

The P2Y1 receptor-mediated leukocyte adhesion to endothelial cells is inhibited by melatonin

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular ATP (released by endothelial and immune cells) and its metabolite ADP are important pro-inflammatory mediators via the activation of purinergic P2 receptors (P2Y and P2X), which represent potential new targets for anti-inflammatory therapy. Endothelial P2Y1 receptor (P2Y1R) induces endothelial cell activation triggering leukocyte adhesion. A number of data have implicated melatonin as a modulator of immunity, inflammation, and endothelial cell function, but to date no studies have investigated whether melatonin modulates endothelial P2YR signaling. Here, we evaluated the putative effect of melatonin on P2Y1R-mediated leukocyte adhesion to endothelial cells and TNF-α production, using mesenteric endothelial cells and fresh peripheral blood mononuclear cells isolated from rats. Endothelial cells were treated with the P2Y1R agonist 2MeSATP, alone or in combination with melatonin, and then exposed to mononuclear cells. 2MeSATP increased leukocyte adhesion to endothelial cells and TNF-α production in vitro, and melatonin inhibited both effects without altering P2Y1R protein expression. In addition, assays with the Ca2+ chelator BAPTA-AM indicate that the effect of melatonin on 2MeSATP-stimulated leukocyte adhesion depends on intracellular Ca2+ modulation. P2Y1R is considered a potential target to control chronic inflammation. Therefore, our data unveiled a new endothelial cell modulator of purinergic P2Y1 receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muller WA (2016) Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev 273:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cel Mol Life Sci 71:2997–3025

    Article  Google Scholar 

  4. Silva CL, Tamura EK, Macedo SM, Cecon E, Bueno-Alves L, Farsky SH et al (2007) Melatonin inhibits nitric oxide production by microvascular endothelial cells in vivo and in vitro. Br J Pharmacol 151(2):195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamura EK, Cecon E, Monteiro AW, Silva CL, Markus RP (2009) Melatonin inhibits LPS-induced NO production in rat endothelial cells. J Pineal Res 46(3):268–274

    Article  CAS  PubMed  Google Scholar 

  6. Lotufo CM, Lopes C, Dubocovich ML, Farsky SH, Markus RP (2001) Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur J Pharmacol 430:351–357

    Article  CAS  PubMed  Google Scholar 

  7. Marçola M, da Silveira Cruz-Machado S, Fernandes PA, Monteiro AW, Markus RP, Tamura EK (2013) Endothelial cell adhesiveness is a function of environmental lighting and melatonin level. J Pineal Res 54(2):162–169

  8. Wang Y, Liu X, Wang W, Song W, Chen L, Fang Q et al (2013) The expression of inflammatory cytokines on the aorta endothelia are up-regulated in pinealectomized rats. Inflammation 36(6):1363–1373

    Article  CAS  PubMed  Google Scholar 

  9. Schnoor M, Alcaide P, Voisin MB, van Buul JD (2015) Crossing the vascular wall: common and unique mechanisms exploited by different leukocyte subsets during extravasation. Mediat Inflamm 2015:946509. doi:10.1155/2015/946509

    Article  Google Scholar 

  10. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  PubMed  Google Scholar 

  11. Schuchardt M, Tölle M, van der Giet M (2012) P2Y purinoceptors as potential emerging therapeutical target in vascular disease. Curr Pharm Des 18(37):6169–6180

    Article  CAS  PubMed  Google Scholar 

  12. Uehara K, Uehara A (2011) P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 136:557–567

    Article  CAS  PubMed  Google Scholar 

  13. Gonçalves da Silva C, Specht A, Wegiel B, Ferran C, Kaczmarek E (2009) Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 119:871–879

    Article  Google Scholar 

  14. Burnstock G, Dale N (2015) Purinergic signalling during development and ageing. Purinergic Signal 11:277–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pober J, Sessa W (2007) Evolving functions of endothelial cells in inflammation. Nature 7:803–815

    CAS  Google Scholar 

  16. Hechler B, Gachet C (2015) Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol 35:2307–2315

    Article  CAS  PubMed  Google Scholar 

  17. Zerr M, Hechler B, Freund M, Magnenat S, Lanois I, Cazenave JP et al (2011) Major contribution of the P2Y1 receptor in purinergic regulation of TNFα-induced vascular inflammation. Circulation 123(21):2404–2413

    Article  CAS  PubMed  Google Scholar 

  18. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118(7):754–763

  19. Shen J, DiCorleto PE (2008) ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways. Circ Res 102:448–456

    Article  CAS  PubMed  Google Scholar 

  20. Lenain N, Freund M, Léon C, Cazenave JP, Gachet C (2003) Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 1(6):1144–1149

    Article  CAS  PubMed  Google Scholar 

  21. Homola M, Pfeffer M, Fischer C, Zimmermann H, Robson SC, Korf HW (2015) Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 362:163–176

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira SD, Quintas LE, Amaral LS, Noël F, Farsky SH, Silva CL (2011) Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease. PLoS One 6(8):e23547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marelli-Berg FD, Peek E, Lidington EA, Stauss HJ, Lechler RI (2004) Isolation of endothelial cells from murine tissue. J Immunol Methods 244:205–215

    Article  Google Scholar 

  24. Oliveira SD, Oliveira NF, Meyer-Fernandes JR, Savio LE, Ornelas FG, Ferreira ZS et al (2016) Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vasc Pharmacol 82:66–72

    Article  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  26. Dubocovich ML, Masana MI, Iacob S, Sauri DM (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedeberg's Arch Pharmacol 355(3):365–375

    Article  CAS  Google Scholar 

  27. Lotufo CM, Yamashita CE, Farsky SH, Markus RP (2006) Melatonin effect on endothelial cells reduces vascular permeability increase induced by leukotriene B4. Eur J Pharmacol 534(1–3):258–263

    Article  CAS  PubMed  Google Scholar 

  28. Chucharoen P, Chetsawang B, Srikiatkhachorn A, Govitrapong P (2003) Melatonin receptor expression in rat cerebral artery. Neurosci Lett 341(3):259–261

    Article  CAS  PubMed  Google Scholar 

  29. Ekmekcioglu C, Thalhammer T, Humpeler S, Mehrabi MR, Glogar HD, Hölzenbein T et al (2003) The melatonin receptor subtype MT2 is present in the human cardiovascular system. J Pineal Res 35(1):40–44

    Article  CAS  PubMed  Google Scholar 

  30. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML et al (2002) MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 302(3):1295–1302

  31. Schepelmann M, Molcan L, Uhrova H, Zeman M, Ellinger I (2011) The presence and localization of melatonin receptors in the rat aorta. Cell Mol Neurobiol 31(8):1257–1265

    Article  CAS  PubMed  Google Scholar 

  32. Lorenzon P, Vecile E, Nardon E, Ferrero E, Harlan JM, Tedesco F et al (1998) Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. J Cell Biol 142(5):1381–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bodiga VL, Kudle MR, Bodiga S (2015) Silencing of PKC-α, TRPC1 or NF-kB expression attenuates cisplatin-induced ICAM-1 expression and endothelial dysfunction. Biochem Pharmacol 98:78–91

    Article  CAS  PubMed  Google Scholar 

  34. Hawkins BJ, Solt LA, Chowdhury I, Kazi AS, Abid MR, Aird WC et al (2007) G protein-coupled receptor Ca2+-linked mitochondrial reactive oxygen species are essential for endothelial/leukocyte adherence. Mol Cel Biol 27:7582–7593

    Article  CAS  Google Scholar 

  35. Domerq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-α and prostaglandins. J Biol Chem 281:30684–30696

    Article  Google Scholar 

  36. Rodella LF, Favero G, Foglio E, Rossini C, Castrezzati S, Lonati C et al (2013) Vascular endothelial cells and dysfunctions: role of melatonin. Front Biosci 5:119–129

    Google Scholar 

  37. Favero G, Rodella LF, Reiter RJ, Rezzani R (2014) Melatonin and its protective effects: a review. Mol Cel Endocrinol 382:926–937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CLMS is senior fellow of CNPq (Brazil). The authors thank Orlando da Rocha Moreira (UFRJ) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lucia Martins Silva.

Ethics declarations

Funding

This study was funded by National Council for Scientific and Technological Development (CNPq, Brazil, grant number 455436/2014-2).

Conflict of interest

Tassya Cataldi Cardoso declares that she has no conflict of interest.

Thaís Emanuelle Pompeu declares that she has no conflict of interest.

Claudia Lucia Martins Silva declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, T.C., Pompeu, T.E. & Silva, C.L.M. The P2Y1 receptor-mediated leukocyte adhesion to endothelial cells is inhibited by melatonin. Purinergic Signalling 13, 331–338 (2017). https://doi.org/10.1007/s11302-017-9565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9565-4

Keywords

Navigation