Skip to main content

Advertisement

Log in

Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    Article  PubMed  CAS  Google Scholar 

  2. Burnstock G (2006) Purinergic signalling—an overview. Novartis Found Symp 276:26–48

    Article  PubMed  CAS  Google Scholar 

  3. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147:S172–S181

    Article  PubMed  CAS  Google Scholar 

  4. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  5. Nandigama R, Padmasekar M, Wartenberg M, Sauer H (2006) Feed forward cycle of hypotonic stress-induced ATP release, purinergic receptor activation, and growth stimulation of prostate cancer cells. J Biol Chem 281:5686–5693

    Article  PubMed  CAS  Google Scholar 

  6. Boucher I, Rich C, Lee A, Marcincin M, Trinkaus-Randall V (2010) The P2Y2 receptor mediates the epithelial injury response and cell migration. Am J Physiol Cell Physiol 299:C411–C421

    Article  PubMed  CAS  Google Scholar 

  7. Yin J, Xu K, Zhang J, Kumar A, Yu FS (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120:815–825

    Article  PubMed  CAS  Google Scholar 

  8. Gourine AV, Dale N, Llaudet E, Poputnikov DM, Spyer KM, Gourine VN (2007) Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585:305–316

    Article  PubMed  CAS  Google Scholar 

  9. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  PubMed  CAS  Google Scholar 

  10. Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, Séror C, Métivier D, Perfettini JL, Zitvogel L, Kroemer G (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–3728

    Article  PubMed  CAS  Google Scholar 

  11. Eltzschig HK, Eckle T, Mager A, Küper N, Karcher C, Weissmüller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108

    Article  PubMed  CAS  Google Scholar 

  12. Knight GE, Bodin P, De Groat WC, Burnstock G (2002) ATP is released from guinea pig ureter epithelium on distension. Am J Physiol Renal Physiol 282:F281–F288

    PubMed  CAS  Google Scholar 

  13. Samuels SE, Lipitz JB, Dahl G, Muller KJ (2010) Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. J Gen Physiol 136:425–442

    Article  PubMed  CAS  Google Scholar 

  14. Ballerini P, Di Iorio P, Ciccarelli R, Nargi E, D’Alimonte I, Traversa U, Rathbone MP, Caciagli F (2002) Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport 13:1789–1792

    Article  PubMed  CAS  Google Scholar 

  15. Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    Article  PubMed  CAS  Google Scholar 

  17. Li A, Leung CT, Peterson-Yantorno K, Stamer WD, Mitchell CH, Civan MM (2011) Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. J Cell Physiol. doi:10.1002/jcp.22715

  18. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Purinergic Signal 5:433–446

    Article  PubMed  CAS  Google Scholar 

  19. Tu J, Le G, Ballard HJ (2010) Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle. J Physiol 588:4563–4578

    Article  PubMed  CAS  Google Scholar 

  20. Li C, Ramjeesingh M, Bear CE (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J Biol Chem 271:11623–11626

    Article  PubMed  CAS  Google Scholar 

  21. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signalling. Pflugers Arch 452:552–562

    Article  PubMed  CAS  Google Scholar 

  22. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. J Physiol 586:3307–3312

    Article  PubMed  CAS  Google Scholar 

  23. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  PubMed  CAS  Google Scholar 

  24. Panjehpour M, Castro M, Klotz KN (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 145:211–218

    Article  PubMed  CAS  Google Scholar 

  25. Chicchi GG, Graziano MP, Koch G, Hey P, Sullivan K, Vicario PP, Cascieri MA (1997) Alterations in receptor activation and divalent cation activation of agonist binding by deletion of intracellular domains of the glucagon receptor. J Biol Chem 272:7765–7769

    Article  PubMed  CAS  Google Scholar 

  26. Umanah GK, Huang LY, Maccarone JM, Naider FR, Becker JM (2011) Changes in Conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Biochemistry. doi:10.1021/bi200254h

  27. Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2:451–469

    Article  PubMed  CAS  Google Scholar 

  28. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    Article  PubMed  CAS  Google Scholar 

  29. Katz S, Boland R, Santillán G (2006) Modulation of ERK 1/2 and p38 MAPK signalling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int J Biochem Cell Biol 38:2082–2091

    Article  PubMed  CAS  Google Scholar 

  30. Katz S, Boland R, Santillán G (2008) Purinergic (ATP) signalling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys 477:244–252

    Article  PubMed  CAS  Google Scholar 

  31. Scodelaro Bilbao P, Boland R, Russo de Boland A, Santillán G (2007) ATP modulation of mitogen activated protein kinases and intracellular Ca2+ in breast cancer (MCF-7) cells. Arch Biochem Biophys 466:15–23

    Article  PubMed  CAS  Google Scholar 

  32. Buzzi N, Bilbao PS, Boland R, de Boland AR (2009) Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta 1790:1651–1659

    Article  PubMed  CAS  Google Scholar 

  33. Neary JT, McCarthya M, Kanga Y, Zuniga S (1998) Mitogenic signalling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242:159–162

    Article  PubMed  CAS  Google Scholar 

  34. Milton SL, Dirk LJ, Kara LF, Prentice HM (2008) Adenosine modulates ERK1/2, PI3K/Akt, and p38MAPK activation in the brain of the anoxia-tolerant turtle Trachemys scripta. J Cereb Blood Flow Metab 28:1469–1477

    Article  PubMed  CAS  Google Scholar 

  35. Huwiler A, Rölz W, Dorsch S, Ren S, Pfeilschifter J (2002) Extracellular ATP and UTP activate the protein kinase B/Akt cascade via the P2Y(2) purinoceptor in renal mesangial cells. Br J Pharmacol 136:520–529

    Article  PubMed  CAS  Google Scholar 

  36. Heo JS, Han HJ (2006) ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signalling pathways. Stem Cells 24:2637–2648

    Article  PubMed  CAS  Google Scholar 

  37. Montiel M, de la Blanca EP, Jiménez E (2006) P2Y receptors activate MAPK/ERK through a pathway involving PI3K/PDK1/PKC-zeta in human vein endothelial cells. Cell Physiol Biochem 18:123–134

    Article  PubMed  CAS  Google Scholar 

  38. Burgos M, Neary JT, González FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103:1785–1800

    Article  PubMed  CAS  Google Scholar 

  39. Scodelaro Bilbao P, Santillán G, Boland R (2010) ATP stimulates the proliferation of MCF-7 cells through the PI3K/Akt signalling pathway. Arch Biochem Biophys 499:40–48

    Article  CAS  Google Scholar 

  40. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Pérez LI, González FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal transduction. J Cell Biol 153:491–501

    Article  PubMed  CAS  Google Scholar 

  41. Vial C, Tobin AB, Evans RJ (2004) G protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 382:101–110

    Article  PubMed  CAS  Google Scholar 

  42. Arthur DB, Georgi S, Akassoglou K, Insel PA (2006) Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J Neurosci 26:3798–3804

    Article  PubMed  CAS  Google Scholar 

  43. D’Ambrosi N, Iafrate M, Vacca F, Amadio S, Tozzi A, Mercuri NB, Volonté C (2006) The P2Y(4) receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signal 2:575–582

    Article  PubMed  CAS  Google Scholar 

  44. Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377:1–33

    Article  PubMed  CAS  Google Scholar 

  45. Amadio S, Apolloni S, D’Ambrosi N, Volonté C (2011) Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J Neurochem 116:796–805

    Article  PubMed  CAS  Google Scholar 

  46. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    Article  PubMed  CAS  Google Scholar 

  47. Nakata H, Suzuki T, Namba K, Oyanagi K (2010) Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. J Recept Signal Transduct Res 30:337–346

    Article  PubMed  CAS  Google Scholar 

  48. Choi RC, Simon J, Tsim KW, Barnard EA (2008) Constitutive and agonist-induced dimerizations of the P2Y1 receptor: relationship to internalization and scaffolding. J Biol Chem 283:11050–11063

    Article  PubMed  CAS  Google Scholar 

  49. Wang L, Karlsson L, Moses S, Hultgårdh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    Article  PubMed  CAS  Google Scholar 

  50. Kotevic I, Kirschner KM, Porzig H, Baltensperger K (2005) Constitutive interaction of the P2Y2 receptor with the hematopoietic cell-specific G protein G(alpha16) and evidence for receptor oligomers. Cell Signal 17:869–880

    Article  PubMed  CAS  Google Scholar 

  51. D’Ambrosi N, Iafrate M, Saba E, Rosa P, Volonté C (2007) Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta 1768:1592–1599

    Article  PubMed  CAS  Google Scholar 

  52. Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Hervé C, Uzabiaga MF, Pereillo JM, Culouscou JM, Bono F, Ferrara P, Herbert JM (2006) The active metabolite of clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci USA 103:11069–11074

    Article  PubMed  CAS  Google Scholar 

  53. Ecke D, Hanck T, Tulapurkar ME, Schäfer R, Kassack M, Stricker R, Reiser G (2008) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409:107–116

    Article  PubMed  CAS  Google Scholar 

  54. Yoshioka K, Saitoh O, Nakata H (2002) Agonist-promoted heteromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells. FEBS Lett 523:147–151

    Article  PubMed  CAS  Google Scholar 

  55. Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002) Heterooligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531:299–303

    Article  PubMed  CAS  Google Scholar 

  56. Sichardt K, Nieber K (2007) Adenosine A(1) receptor: functional receptor-receptor interactions in the brain. Purinergic Signal 3:285–298

    Article  PubMed  CAS  Google Scholar 

  57. Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci USA 98:7617–7622

    Article  PubMed  CAS  Google Scholar 

  58. Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH (2007) Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 26:890–902

    Article  PubMed  CAS  Google Scholar 

  59. Tonazzini I, Trincavelli ML, Montali M, Martini C (2008) Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells. J Neurosci Res 86:2857–2866

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki T, Namba K, Tsuga H, Nakata H (2006) Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem Biophys Res Commun 351:559–565

    Article  PubMed  CAS  Google Scholar 

  61. Chen Y, Shukla A, Namiki S, Insel PA, Junger WG (2004) A putative osmoreceptor system that controls neutrophil function through the release of ATP, its conversion to adenosine, and activation of A2 adenosine and P2 receptors. J Leukoc Biol 76:245–253

    Article  PubMed  CAS  Google Scholar 

  62. Rieg T, Vallon V (2009) ATP and adenosine in the local regulation of water transport and homeostasis by the kidney. Am J Physiol Regul Integr Comp Physiol 296:R419–R427

    Article  PubMed  CAS  Google Scholar 

  63. Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signalling in human platelets. Blood 104:1745–1752

    Article  PubMed  CAS  Google Scholar 

  64. Suplat D, Krzeminski P, Pomorski P, Baranska (2007) P2Y1 and P2Y12 receptor cross-talk in calcium signalling: evidence from nonstarved and long-term serum-deprived glioma C6 cells. Purinergic Signal 3:221–230

    Article  PubMed  CAS  Google Scholar 

  65. Fredholm BB, Assender JW, Irenius E, Kodama N, Saito N (2003) Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells. Cell Mol Neurobiol 23:379–400

    Article  PubMed  CAS  Google Scholar 

  66. Nishida M, Ogushi M, Suda R, Toyotaka M, Saiki S, Kitajima N, Nakaya M, Kim KM, Ide T, Sato Y, Inoue K, Kurose H (2011) Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-{kappa}B. Proc Natl Acad Sci USA 108:6662–6667

    Article  PubMed  CAS  Google Scholar 

  67. Dickenson JM, Blank JL, Hill SJ (1998) Human adenosine A1 receptor and P2Y2-purinoceptor-mediated activation of the mitogen-activated protein kinase cascade in transfected CHO cells. Br J Pharmacol 124:1491–1499

    Article  PubMed  CAS  Google Scholar 

  68. Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD (2008) Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283:36599–36607

    Article  PubMed  CAS  Google Scholar 

  69. Song W, Wei S, Matalon S (2010) Inhibition of epithelial sodium channels by respiratory syncytial virus in vitro and in vivo. Ann N Y Acad Sci 1203:79–84

    Article  PubMed  CAS  Google Scholar 

  70. Wirkner K, Köles L, Thümmler S, Luthardt J, Poelchen W, Franke H, Fürst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488

    Article  PubMed  CAS  Google Scholar 

  71. Schicker KW, Chandaka GK, Geier P, Kubista H, Boehm S (2010) P2Y1 receptors mediate an activation of neuronal calcium-dependent K+ channels. J Physiol 588:3713–3725

    Article  PubMed  CAS  Google Scholar 

  72. Huang W, Xiu Y, Yan JA, He WJ, Zhao YD, Hu ZA, Ruan HZ (2010) Facilitation of Ih channels by P2Y1 receptors activation in mesencephalic trigeminal neurons. Neurosci Lett 482:156–159

    Article  PubMed  CAS  Google Scholar 

  73. Soltoff SP (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J Biol Chem 273:23110–23117

    Article  PubMed  CAS  Google Scholar 

  74. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  PubMed  CAS  Google Scholar 

  75. Gullick WJ, Srinivasan R (1998) The type 1 growth factor receptor family: new ligands and receptors and their role in breast cancer. Breast Cancer Res Treat 52:43–53

    Article  PubMed  CAS  Google Scholar 

  76. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19:6550–6565

    Article  PubMed  CAS  Google Scholar 

  77. Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A (2007) Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signalling and expression in epithelial cells. J Cell Sci 120:4289–4301

    Article  PubMed  CAS  Google Scholar 

  78. Yin J, Xu K, Zhang J, Kumar A, Yu F-SX (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120:815–825

    Article  PubMed  CAS  Google Scholar 

  79. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

    Article  PubMed  Google Scholar 

  80. Luke TM, Hexum TD (2008) UTP and ATP increase extracellular signal-regulated kinase 1/2 phosphorylation in bovine chromaffin cells through epidermal growth factor receptor transactivation. Purinergic Signal 4:323–330

    Article  PubMed  CAS  Google Scholar 

  81. Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Pérez LI, González FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    Article  PubMed  CAS  Google Scholar 

  82. Stefano L, Rössler OG, Griesemer D, Hoth M, Thiel G (2007) P2X(7) receptor stimulation upregulates Egr-1 biosynthesis involving a cytosolic Ca(2+) rise, transactivation of the EGF receptor and phosphorylation of ERK and Elk-1. J Cell Physiol 213:36–44

    Article  PubMed  CAS  Google Scholar 

  83. Wagstaff SC, Bowler WB, Gallagher JA, Hipskind RA (2000) Extracellular ATP activates multiple signalling pathways and potentiates growth factor-induced c-fos gene expression in MCF-7 breast cancer cells. Carcinogenesis 21:2175–2181

    Article  PubMed  CAS  Google Scholar 

  84. Mishra SK, Braun N, Shukla V, Fullgrabe M, Scomerus C, Korf H-W, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2005) Extracellular nucleotide signalling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    Article  CAS  Google Scholar 

  85. Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol 199:181–189

    Article  CAS  Google Scholar 

  86. Agazie YM, Bagot JC, Trickey E, Halenda SP, Wilden PA (2001) Molecular mechanisms of ATP and insulin synergistic stimulation of coronary artery smooth muscle growth. Am J Physiol Heart Circ Physiol 280:H795–H801

    PubMed  CAS  Google Scholar 

  87. White PJ, Kumari R, Porter KE, London NJ, Ng LL, Boarder MR (2000) Antiproliferative effect of UTP on human arterial and venous smooth muscle cells. Am J Physiol Heart Circ Physiol 279:2735–2742

    Google Scholar 

  88. Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, González A, Huidobro-Toro JP (2010) UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 285:2940–2950

    Article  PubMed  CAS  Google Scholar 

  89. Neary JT, Kang Y, Shi YF (2004) Signalling from nucleotide receptors to protein kinase cascades in astrocytes. Neurochem Res 29:2037–2042

    Article  PubMed  CAS  Google Scholar 

  90. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    Article  PubMed  CAS  Google Scholar 

  91. D’Ambrosi N, Cavaliere F, Merlo D, Milazzo L, Mercanti D, Volonté C (2000) Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology 39:1083–1094

    Article  PubMed  Google Scholar 

  92. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonté C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534

    Article  PubMed  Google Scholar 

  93. Arthur DB, Taupenot L, Insel PA (2007) Nerve growth factor-stimulated neuronal differentiation induces changes in P2 receptor expression and nucleotide-stimulated catecholamine release. J Neurochem 100:1257–1264

    Article  PubMed  CAS  Google Scholar 

  94. D’Ambrosi N, Murra B, Vacca F, Volonté C (2004) Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Prog Brain Res 146:93–100

    Article  PubMed  CAS  Google Scholar 

  95. Kong Q, Wang M, Liao Z, Camden JM, Yu S, Simonyi A, Sun GY, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons. Purinergic Signal 1:337–347

    Article  PubMed  CAS  Google Scholar 

  96. Wang Q, Wang L, Feng Y-H, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287:C1349–C1358

    Article  PubMed  CAS  Google Scholar 

  97. Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brüne B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol Renal Physiol 275:F962–F971

    CAS  Google Scholar 

  98. Lakshmi S, Joshi PG (2006) (2006) Activation of Src/kinase/phospholipase C/mitogen activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141:179–189

    Article  PubMed  CAS  Google Scholar 

  99. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signalling to enhance neuronal differentiation. Proc Natl Acad Sci U S A 102:19138–19143

    Article  PubMed  CAS  Google Scholar 

  100. Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59:363–378

    Article  PubMed  Google Scholar 

  101. Daniele S, Lecca D, Trincavelli ML, Ciampi O, Abbracchio MP, Martini C (2010) Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17. Cell Signal 22:697–706

    Article  PubMed  CAS  Google Scholar 

  102. Seye CI, Yu N, González FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    Article  PubMed  CAS  Google Scholar 

  103. Rumjahn SM, Baldwin KA, Buxton IL (2007) P2Y receptor-mediated angiogenesis via vascular endothelial growth factor receptor 2 signalling. Proc West Pharmacol Soc 50:58–60

    PubMed  CAS  Google Scholar 

  104. Rumjahn SM, Yokdang N, Baldwin KA, Thai J, Buxton IL (2009) Purinergic regulation of vascular endothelial growth factor signalling in angiogenesis. Br J Cancer 100:1465–1470

    Article  PubMed  CAS  Google Scholar 

  105. Bambace NM, Levis JE, Holmes CE (2010) The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 21:85–93

    Article  PubMed  CAS  Google Scholar 

  106. Hill LM, Gavala ML, Lenertz LY, Bertics PJ (2010) Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185:3028–3034

    Article  PubMed  CAS  Google Scholar 

  107. Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA (2010) P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 285:7545–7555

    Article  PubMed  CAS  Google Scholar 

  108. Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 260:79–87

    Article  PubMed  CAS  Google Scholar 

  109. Neary JT, Kang Y, Shi Y-F (2005) Cell cycle regulation of astrocytes by extracellular nucleotides and fibroblast growth factor-2. Purinergic Signal 1:329–336

    Article  PubMed  CAS  Google Scholar 

  110. Neary JT, Kang Y, Shi YF, Tran MD, Wanner IB (2006) P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell–cell interactions. Novartis Found Symp 276:131–143

    Article  PubMed  CAS  Google Scholar 

  111. Neary JT, Shi YF, Kang Y, Tran MD (2008) Opposing effects of P2X(7) and P2Y purine/pyrimidine-preferring receptors on proliferation of astrocytes induced by fibroblast growth factor-2: implications for CNS development, injury, and repair. J Neurosci Res 86:3096–3105

    Article  PubMed  CAS  Google Scholar 

  112. Jia C, Cussen AR, Hegg CC (2011) ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor alpha in neonatal and adult mice: effect on neuroproliferation. Neuroscience 177:335–346

    Article  PubMed  CAS  Google Scholar 

  113. Li HJ, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B (2011) P2Y(2) receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 338:28–37

    Article  PubMed  CAS  Google Scholar 

  114. Ma B, Yu L, Fan J, Cong B, He P, Ni X, Burnstock G (2011) Estrogen modulation of peripheral pain signal transduction: involvement of P2X3 receptors. Purinergic Signal 7:73–83

    Article  PubMed  CAS  Google Scholar 

  115. Fan J, Yu LH, Zhang Y, Ni X, Ma B, Burnstock G (2009) Estrogen altered visceromotor reflex and P2X(3) mRNA expression in a rat model of colitis. Steroids 74:956–962

    Article  PubMed  CAS  Google Scholar 

  116. Rajagopal M, Fischer H, Widdicombe JH (2008) Hormonal and purinergic stimulation of bicarbonate secretion in oviducts of rhesus monkey. Am J Physiol Endocrinol Metab 295:55–62

    Article  CAS  Google Scholar 

  117. Wang Q, Li X, Wang L, Feng Y-H, Zeng R, Gorodeski G (2004) Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells. Endocrinology 145:5568–5579

    Article  PubMed  CAS  Google Scholar 

  118. Cario-Toumaniantz C, Loirand G, Ferrier L, Pacaud P (1998) Non-genomic inhibition of human P2X7 purinoceptor by 17beta-estradiol. J Physiol 508:659–666

    Article  PubMed  CAS  Google Scholar 

  119. De Roo M, Boué-Grabot E, Schlichter R (2010) Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology 58:569–577

    Article  PubMed  CAS  Google Scholar 

  120. Lee KL, Dai Q, Hansen EL, Saner CN, Price TM (2010) Modulation of ATP-induced calcium signalling by progesterone in T47D-Y breast cancer cells. Mol Cell Endocr 319:109–115

    Article  CAS  Google Scholar 

  121. Tai C-J, Kang SK, Tzeng C-R, Leung PCK (2001) Adenosine triphosphate activates mitogen-activated protein kinase in human granulosa-luteal cells. Endocrinology 142:1554–1560

    Article  PubMed  CAS  Google Scholar 

  122. Lin H-Y, Sun M, Lin C, Tang H-Y, London D, Shih A, Davis FB, Davis PJ (2009) Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-α-positive and -negative breast cancer cells. J Steroid Biochem Mol Biol 113:182–188

    Article  PubMed  CAS  Google Scholar 

  123. Foresta C, Rossato M, Nogara A, Gottardello F, Bordon P, Di Virgilio F (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320:499–504

    PubMed  CAS  Google Scholar 

  124. Antonio LS, Costa RR, Gomes MD, Varanda WA (2009) Mouse Leydig cells express multiple P2X receptor subunits. Purinergic Signal 5:277–287

    Article  PubMed  CAS  Google Scholar 

  125. Brock JA, Handelsman DJ, Keast JR (2007) Postnatal androgen deprivation dissociates the development of smooth muscle innervation from functional neurotransmission in mouse vas deferens. J Physiol 581:665–678

    Article  PubMed  CAS  Google Scholar 

  126. Ding Y, Gao ZG, Jacobson KA, Suffredini AF (2010) Dexamethasone enhances ATP-induced inflammatory responses in endothelial cells. J Pharmacol Exp Ther 335:693–702

    Article  PubMed  CAS  Google Scholar 

  127. Yukawa H, Shen J, Harada N, Cho-Tamaoka H, Yamashita T (2005) Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience 130:485–496

    Article  PubMed  CAS  Google Scholar 

  128. Han JZ, Lin W, Chen YZ (2005) Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A. Acta Pharmacol Sin 26:199–204

    Article  PubMed  Google Scholar 

  129. Liu XH, Zeng JW, Zhao YD, Chen PH, Xiao Z, Ruan HZ (2008) Rapid inhibition of ATP-induced currents by corticosterone in rat dorsal root ganglion neurons. Pharmacology 82:164–170

    Article  PubMed  CAS  Google Scholar 

  130. Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, Insel PA, Stockand JD, Vallon V (2010) Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J 24:2056–2065

    Article  PubMed  CAS  Google Scholar 

  131. Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V (2007) Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21:3717–3726

    Article  PubMed  CAS  Google Scholar 

  132. Fujishita K, Koizumi S, Inoue K (2006) Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signal 2:491–498

    Article  PubMed  CAS  Google Scholar 

  133. Tozaki-Saitoh H, Koizumi S, Sato Y, Tsuda M, Nagao T, Inoue K (2006) Retinoic acids increase P2X2 receptor expression through the 5′-flanking region of P2rx2 gene in rat phaeochromocytoma PC-12 cells. Mol Pharmacol 70:319–328

    PubMed  CAS  Google Scholar 

  134. Orellano EA, Rivera OJ, Chevres M, Chorna NE, González FA (2009) Inhibition of neuronal cell death after retinoic acid-induced down-regulation of P2X7 nucleotide receptor expression. Mol Cell Biochem 337:83–99

    Article  PubMed  CAS  Google Scholar 

  135. Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, Chu D, Sun SH (2009) Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 21:881–891

    Article  PubMed  CAS  Google Scholar 

  136. Lee H, Choi BH, Suh BC, Lee SK, Kim KT (2003) Attenuation of signal flow from P2Y6 receptor by protein kinase C-alpha in SK-N-BE(2)C human neuroblastoma cells. J Neurochem 85:1043–1053

    Article  PubMed  CAS  Google Scholar 

  137. Biswas P, Zanello LP (2009) 1α, 25(OH)2 vitamin D3 induction of ATP secretion in osteoblasts. J Bone Miner Res 24:1450–1460

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support to this study by the National Research Council of Argentina (CONICET) and Universidad Nacional del Sur (Argentina) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Scodelaro Bilbao.

Additional information

Bilbao and Katz have equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilbao, P.S., Katz, S. & Boland, R. Interaction of purinergic receptors with GPCRs, ion channels, tyrosine kinase and steroid hormone receptors orchestrates cell function. Purinergic Signalling 8, 91–103 (2012). https://doi.org/10.1007/s11302-011-9260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9260-9

Keywords

Navigation