Skip to main content
Log in

Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The Anatolian peninsula otherwise known as Asia Minor is considered one of the centers that shaped grape (Vitis spp.) evolution and domestication. This region with diverse ecological conditions also has a long history of viticulture and growing grapes has been a part of the local culture since very old times. However, very little information is available on genetic analysis of Anatolian grape germplasm. This study reports on genetic analyses of 88 grapevine cultivars from Central Anatolia using 17 microsatellite (SSR) loci. The average number of alleles per locus was 9.18, ranging from 5 to 15. The highest heterozygosity rate was obtained for the SSR loci “VVS2” and “VMC2H4.” Genetic distances between populations ranged from 0.056 to 0.207 and two cases of identical, seven cases of homonymous, and nine cases of synonymous grape cultivar groups were identified. Based on comparisons with international Vitis databases, it has been determined that “Moldova-Coarna Neagra” cultivar is synonymous with some Anatolian cultivars. In addition, investigation of the genetic diversity of 20 genotypes of Anatolian wild germplasm revealed a higher level of genetic diversity in wild populations than in cultivated ones at the studied microsatellite loci. The results reported here should not only contribute towards better management of the grape germplasm of the region but also provide new insights into grape domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almadanim MC, Baleiras-Couto MM, Pereira HS, Carneiro LC, Fevereiro P, Eiras-Dias JE, Morais-Cecilio L, ViegasmW VMM (2007) Genetic diversity of the grapevine (Vitis vinifera L.) cultivars most utilized for wine production in Portugal. Vitis 46(3):116–119

    CAS  Google Scholar 

  • Arroyo-García R, Revilla E (2013) The current status of wild grapevine populations (Vitis vinifera ssp sylvestris) in the Mediterranean basin. https://doi.org/10.5772/52933

  • Arroyo-Garcia R, Ruiz-Garcia L, Boulling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun Hİ, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern P, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snouss H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp.sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714

    CAS  PubMed  Google Scholar 

  • Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine, Vitis vinifera L subsp silvestris. Heredity 104:431–437

    CAS  PubMed  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    CAS  PubMed  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50(3):243–246

    CAS  Google Scholar 

  • Boz Y, Bakır M, Çelikkol BP, Kazan K, Yılmaz F, Çakır B, Aslantaş Ş, Söylemezoğlu G, Yaşasın AS, Özer C, Çelik H, Ergül A (2011) Genetic characterization of grape (Vitis vinifera L.) germplasm from Southeast Anatolia by SSR markers. Vitis 50(3):99–106

    Google Scholar 

  • Corander J, Marttinen P, Siren J, Tang J, Cheng L (2005-2012) Bayesian analysis of population structure (BAPS), version 6.0. http://www.Helsinki.fi/bsg/software/BAPS

  • Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9:539

    PubMed  PubMed Central  Google Scholar 

  • Crespan M, Cancellier S, Costacurta A, Guist M, Carraro R, Stefano R, Santangelo S (2003) Contribution to the clearing up of synonymies in some groups of Italian grapevine cultivars. Proc Acta Hortic 603:275–289

    Google Scholar 

  • Cunha J, Balerias-Couto M, Cunha JP, Banza J, Soveral A, Carneiro LC, Eiras-Dias JE (2007) Characterization of Portuguese populations of Vitis vinifera L ssp sylvestris (Gmelin) Hegi. Genet Resour Crop Evol 54:981–988. https://doi.org/10.1007/s10722-006-9189-y

    Article  Google Scholar 

  • Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    CAS  PubMed  Google Scholar 

  • de Andrés MT, Benito A, Pérez-Rivera G, Ocete R, Lopez MA, Gaforio L, Muñoz G, Cabello F, Martinez-Zapater JM, Arroyo-Garcia R (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816

    PubMed  Google Scholar 

  • Dettweiller E, Jung A, Zyprian E, Töpfer R (2000) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 39(2):63–65

    Google Scholar 

  • Di Vecchi-Staraz M, Lucou V, Bruno G, Lamcombe T, Gerber S, Bourse T, Boselli M, This P (2009) Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. ssp silvestris. J Hered 100(1):66–75. https://doi.org/10.1093/jhered/esn084

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13(39):1–17

    Google Scholar 

  • Ergül A, Kazan K, Aras S, Çevik V, Çelik H, Söylemezoğlu G (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis viniferaL.) varietal groups. Genome 49:467–495

    PubMed  Google Scholar 

  • Ergül A, Perez-Rivera G, Söylemezoğlu G, Kazan K, Arroyo-Garcia R (2011) Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genet Resour  9(3):375–383

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Eyduran PS, Ercisli S, Akin M, Eyduran E (2015) Genetic characterization of autochthonous grapevine cultivars from Eastern Turkey by simple sequence repeats (SSRs) ARTICLE; Agriculture and Environmental Biotechnology. https://doi.org/10.1080/13102818.2015.1105726

  • Ferrara G, Gallotta A, Pacucci C, Matarrese AMS, Mazzeo A, Giancaspro A, Gadaleta A, Piazzolla F, Colelli G (2017) The table grape ‘Victoria’ with a long shaped berry: a potential mutation with attractive characteristics for consumers. J Sci Food Agric. https://doi.org/10.1002/jsfa.8429

  • Gismondi A, Impei S, Di Marco G, Crespan M, Leonardi D, Canini A (2014) Detection of new genetic profiles and allelic variants in improperly classified grapevine accessions. Genome 57:111–118

    CAS  PubMed  Google Scholar 

  • Goto-Yamamoto N, Mouri H, Azumi M, Edwards KJ (2006) Development of grape microsatellite markers and mikrosatellite analysis including oriental cultivars. Am J Enol Vitic 57(1):105–108

    CAS  Google Scholar 

  • Goto-Yamamoto N, Azuma A, Mitani N, Kobayash S (2013) SSR genotyping of wild grape species and grape cultivars of Vitis vinifera and V. vinifera×V. labrusca. J Japan Soc Hort Sci 82(2):125–130

    Google Scholar 

  • Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003) Evidence of a secondary grapevine domestication center detected by SSR analysis. Theor Appl Genet 107:1315–1320

    CAS  PubMed  Google Scholar 

  • Grassi F, De Mattia F, Zecca G, Sala F, Labra M (2008) Historical isolation and quaternary range expansion of divergent lineages in wild grapevine. Biol J Linn Soc 95:611–619

    Google Scholar 

  • Guo DL, Yu YH, Xi FF, Shi YY, Zhang GH (2016) Histological and molecular characterization of grape early ripening bud mutant. Int J Genomıcs  2016:1–7

  • Hizarci Y, Ercisli S, Yuksel C, Ergul A (2012) Genetic characterization and relatedness among autochthonous grapevine cultivars from Northeast Turkey by simple sequence repeats (SSR). J Appl Bot Food Qual 85:224–228

    Google Scholar 

  • Hvarleva T, Rusanov K, Lefort F, Tsvetkov I, Atanassov A, Atanassov I (2004) Genotyping of Bulgarian Vitis vinifera L. cultivars by microsatellite analysis. Vitis 43:27–34

    CAS  Google Scholar 

  • Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K (2016) The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunusavium L.). Plant Biotechnol J 14(11):2120–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karataş H, Değirmenci D, Velasco R, Vezzulli S, Bodur Ç, Ağaoğlu YS (2007) Microsatellite fingerprinting of homonymous grapevine (Vitis vinifera L.) varieties in neighboring regions of south-East Turkey. Sci Hortic. https://doi.org/10.1016/j.scienta.2007.07.001

  • Karataş DD, Karataş H, Laucou V, Sarikamiş G, Riahi L, Bacilieri R, This P (2014) Genetic diversity of wild and cultivated grapevine accessions from Southeast Turkey. Hereditas 151:73–80

    PubMed  Google Scholar 

  • Khadivi A, Gismondi A, Canini A (2017) Genetic characterization of Iranian grapes (Vitis vinifera L.) and their relationships with Italian ecotypes. Agrofor Syst. https://doi.org/10.1007/s10457-017-0134-1

  • Labra M, Imazio S, GrassI F, RossonI M, Sala F (2004) Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed 123:180–185

    CAS  Google Scholar 

  • Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Péros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414

    PubMed  Google Scholar 

  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    CAS  PubMed  Google Scholar 

  • Lefort F, Lally M, Thompson D, Douglas GC (1998) Morphologicaltraits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genetica 47:257–262

    Google Scholar 

  • Lopes MS, Mendonça D, Rodrigues dos Santos M, Eiras-Dias JE, da Câmara MA (2009) New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome 52:790–800

    CAS  PubMed  Google Scholar 

  • Maul E, Sudharma KN, Kecke S, Marx G, Müller C, Audeguin L, … This P (2012) The European Vitis database (www.eu-vitis.de) - a technical innovation through an online uploading and interactive modification system. Vitis 51:79–86

  • Maul E, Eibach R, Zyprian E, Töpfer R (2015) The prolific grape variety (Vitis vinifera L.) ‘Heunisch Weiss’ (= ‘Gouaisblanc’): bud mutants, “colored” homonyms and further offspring. Vitis 54:79–86

    CAS  Google Scholar 

  • Mcgovern P (2003) Ancient wine, the search for the origins of viticulture. Princeton University Press, Princeton

    Google Scholar 

  • Medhi K, Sarmah DK, Deka M, Bhau BS (2014) High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of Upper Brahmaputra Valley Zone of NE India using molecular markers. Meta Gene:706–721

  • Meneghetti S, Costacurta A, Frare E, Da Rold G, Migliaro D, Morreale G, Crespan M, Sotés V, Calò A (2011) Clones identification and genetic characterization of Garnacha grapevine by means of different PCR-derived marker systems. Mol Biotechnol 48(3):244–254

    CAS  PubMed  Google Scholar 

  • Merdinoglu D, Butterlin G, Baur C, Balthazard J, Bouquet A, Boursiquot JM (2000) Comparison of RAPD, AFLP and SSR (microsatellite) markers for genetic diversity analysis in Vitis vinifera L. Acta Hortic 528:193–197

    CAS  Google Scholar 

  • Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, Cavalli-Sforza LL (1995) Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data. http://lotka.stanford.edu:microsat.html.

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Google Scholar 

  • Olmo HP (1935) Empty seededness in varieties of Vitis vinifera. Proceedings of the J Am Soc Hortıc Scı 32:376–380

  • Regner F, Hack R, Santiago JL (2006) Highly variable Vitis microsatellite loci for the identification of pinot noir clones. Vitis 45(2):85–91

    CAS  Google Scholar 

  • Riahi L, Soghlami N, El-Heir K, Laucou V, Cunff LL, Boursiquot JM, Lacombe T, Mliki A, Ghorbel A, This P (2010) Genetic structure and differentiation among grapevines (Vitis vinifera) accessions from Maghred region. Genet Resour Crop Evol 57:255–272

    CAS  Google Scholar 

  • Riaz S, De Lorenzis G, Velasco D, Koehmstedt A, Maghradze D, Bobokashvili Z, Musayev M, Zdunic G, Laucou V, Walker MA, Failla O, Preece JE, Aradhya M, Arroyo-Garcia R (2018) Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) cultivars around the Mediterranean basin and Central Asia. BMC Plant Biol 18(137):1–14. https://doi.org/10.1186/s12870-018-1351-0

    Article  Google Scholar 

  • Rohlf F (1988) NTSYS-PC numerical taxonomy and multivariate analysis system, version 2.0. Setoukat, NY, USA

  • Rohlf F (2004) NTSYS-pc: numeric taxonomic systems. Applied biostatistics Inc. version 2.20. Setoukat, NY, USA

  • Salayeva S, Decroocq S, Mariette S, Akhundova E (2010) Comparıison of genetic diversity between cultivated and wild grape varieties originating from the near-Caspian zone of Azerbaijan. J Int Sci Vigne Vin 44(4):191–200

    CAS  Google Scholar 

  • Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibañez J, Pejic I, Wegner HW, Glössl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505

    Google Scholar 

  • Selli F, Bakir M, Inan G, Aygun H, Boz Y, Yasasin AS, Ozer X, Akman B, Soylemezlu G, Kazan K, Ergul A (2007) Simple sequence repeat based assessment of genetic diversity in Dimrit and Germe grapevine cultivars from Turkey. Vitis 46:182–187

    CAS  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating the average level of gene flow. Evolution 43:1349–1368

    PubMed  Google Scholar 

  • Stajner N, Tomić L, Ivanisević D, Korać N, Cvetković-Jovanović T, Beleski K, Angleova E, Maraš V, Javornik B (2014) Microsatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genet Genomes 10:127–140

    Google Scholar 

  • Tangolar SG, Soydam S, Bakir M, Karaaǧaç E (2009) Genetic analysis of grapevine cultivars from the eastern Mediterranean region of Turkey, based on SSR markers. J Agric Sci 15:1–8

    Google Scholar 

  • Terral JF, Tabard E, Bouby L, Ivorra S, Pastor T, Figueiral I, Picq S, Chevance JB, Jung C, Fabre L, Tardy C (2010) Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot 105:443–455

    PubMed  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519

    CAS  PubMed  Google Scholar 

  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequenced-tagged sites (STSs). Theor Appl Genet 86:985–990

    CAS  PubMed  Google Scholar 

  • Veron V, Caron H, Degen B (2005) Gene flow and mating system of the tropical tree Sextonia rubra. Silvae Genetica 54:275–280

    Google Scholar 

  • Villano C, Carputo D, Frusciante L, Santoro X, Aversano R (2014) Use of SSR and Retrotransposon-based markers to interpret the population structure of native grapevines from southern Italy. Mol Biotechnol 56:1011–1020. https://doi.org/10.1007/s12033-014-9780-y

    Article  CAS  PubMed  Google Scholar 

  • Vouillamoz JF, McGovern PE, Ergul A, Söylemezoğlu G, Tevzadze G, Meredith CP, Grando MS (2006) Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Genet Resour  4(2):144–158

  • Wagner HW, Sefc KM (1999) IDENTITY 1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    CAS  PubMed  Google Scholar 

  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X (2014) High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One 9(2):e87381. https://doi.org/10.1371/journal.pone.0087381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang J, Liu L, Zhang L, Wei L, Hu D (2015) Genetic diversity of grape germplasm as revealed by microsatellite (SSR) markers. Afr J Biotechnol 14(2):990–998

    Google Scholar 

  • Yang H, Zhang R, Jin G, Feng Z, Zhou Z (2016) Assessing the genetic diversity and genealogical reconstruction of cypress (CupressusfunebrisEndl.) breeding parents using SSR markers. Forests 7(160):1–14. https://doi.org/10.3390/f7080160

    Article  Google Scholar 

  • Zinelabidine LH, Haddioui A, Bravo G, Arroyo-Garcia R, Martinez-Zapater JM (2010) Genetic origins of cultivated and wild grapevines from Morocco. Am J Enol Vitic 61:83–90

    Google Scholar 

Download references

Funding

This study was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) (Grant No. 105 G 078).

Author information

Authors and Affiliations

Authors

Contributions

AE designed and outlined the research. FY, MS, CYÖ, and GS conducted the experiments. KK, NH, FY, and CYÖ performed the bioinformatics studies, interpreted the data, and wrote the manuscript. TU, CÖ, ASY, YB, and HÇ organized the plant collection and preparation. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ali Ergül.

Ethics declarations

The names of internationally known SSR loci as well as ampelographic and molecular data from the grape cultivars used in the study were presented in the text and in the Supplementary Tables.

Additional information

Communicated by G. G. Vendramin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table 1

Names, cultivar numbers, bunch-berry properties and ripening times of the grapevine cultivars from Central Anatolia (DOCX 46 kb).

Supplementary Table 2

Allele sizes (bp) of grape Central Anatolian and reference cultivars at 17 SSR loci (See Supplementary Table 1 for corresponding cultivar no) (DOCX 94 kb).

Supplementary Table 3

Central Anatolian grape cultivars with varying degree of genetic similarity identified based on SSR analysis. Cultivar name (Cultivar no, See Supplementary Table 1 for corresponding cultivar no) (DOCX 30 kb).

Supplementary Table 4

Expected (He) and observed (Ho) heterozygosity values for Central Anatolian cultivars, wild grapes and reference group (DOCX 14 kb).

Supplementary Table 5

Genetic differentiation (Fst, below diagonal) and gene flow (Nm, above diagonal) between Central Anatolian cultivars, wild grapes and reference group (DOCX 12 kb).

Supplementary Table 6

Nei’s genetic distance values measured between cultivars, wild grapes and reference group (DOCX 15 kb).

Supplementary Figure 1

Genetic relationships observed between Central Anatolian cultivars-wild grape populations. The dendrogram was constructed by neighbor-joining clustering based on Nei’s (1972) genetic distance (JPG 26 kb).

Supplementary Figure 2

Bayesian analysis of population structure (BAPS) of Central Anatolian cultivars. A. Grape cultivars from Central Anatolia were grouped according to provinces and subjected to BAPS analysis to observe population structuring. B. The same analysis was repeated based on the individual cultivars. Each vertical bar represents one individual genotype, populations are separated by black vertical lines (JPG 73 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, F., Shidfar, M., Hazrati, N. et al. Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats. Tree Genetics & Genomes 16, 55 (2020). https://doi.org/10.1007/s11295-020-01429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01429-z

Keywords

Navigation