Skip to main content

Advertisement

Log in

Historical range contraction, and not taxonomy, explains the contemporary genetic structure of the Australian tree Acacia dealbata Link

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alba-Sánchez F, López-Sáez JA, BB-d P, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228

    Article  Google Scholar 

  • Broadhurst LM, Young AG (2006) Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in Southeast Australia. Biol Conserv 133:512–526

    Article  Google Scholar 

  • Broadhurst LM, North T, Young AG (2006) Should we be more critical of remnant seed sources being used for revegetation? Ecol Manag Restor 7:211–217

    Article  Google Scholar 

  • Broadhurst LM, Young AG, Forrester R (2008) Genetic and demographic responses of fragmented Acacia dealbata (Mimosaceae) populations in southeastern Australia. Biol Conserv 141:2843–2856

    Article  Google Scholar 

  • Bryne M, Macdonald B, Francki M (2001) Incorporation of sodium sulfite into extraction protocol minimizes degradation of Acacia DNA. Biotechniques 30:742–742 748

    Article  Google Scholar 

  • Butcher PA, McDonald MW, Bell JC (2009) Congruence between environmental parameters, morphology and genetic structure in Australia’s most widely distributed eucalypt, Eucalyptus camaldulensis. Tree Genet Genomes 5:189–210

    Article  Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941

    Article  PubMed  Google Scholar 

  • Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, Keogh JS, Melville J, Moritz C, Porch N, Sniderman JMK, Sunnucks P, Weston PH (2011) Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 38:1635–1656

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cavers S, Telford A, Cruz FA et al (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. J Biogeogr 40:732–746

    Article  Google Scholar 

  • Chapple DG, Keogh JS, Hutchinson MN (2005) Substantial genetic substructuring in southeastern and alpine Australia revealed by molecular phylogeography of the Egernia whitii (Lacertilia: Scincidae) species group. Mol Ecol 14:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Crandall KA, Bninda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  CAS  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Duncan CJ, Worth JRP, Jordan GJ, Jones RC, Vaillancourt RE (2016) Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii. Heredity 116:99–106

    Article  PubMed  CAS  Google Scholar 

  • Dyer AR, Rice KJ (1997) Evidence of spatial genetic structure in a California bunchgrass population. Oecologia 112:333–339

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eidesen PB, Ehrich D, Bakkestuen V, Alsos IG, Gilg O, Taberlet P, Brochmann C (2013) Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytol 200:898–910

    Article  PubMed  Google Scholar 

  • Erst PJ (2017) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conversation. http://biodiversityinformatics.amnh.org/open_source/gdmg/. Accessed 24 Jan 2017

  • Evanno F, Regneut S, Groudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Gibson AL, Espeland EK, Wagner V, Nelson CR (2016) Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methologies. Evol Appl 9:1219–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemaud T, Broadhurst L, Legoff I, et al (2015) Development of 23 polymorphic microsatellite loci in invasive silver wattle, Acacia dealbata (Fabaceae). Appl Plant Sci 3:apps.1500018

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirsch H, Zimmermann H, Ritz CM, Wissemann V, Wehrden H, Renison D, Wesche K, Welk E, Hensen I (2011) Tracking the origin of invasive Rosa rubiginosa populations in Argentina. Int J Plant Sci 172:530–540

    Article  Google Scholar 

  • Hirsch H, Gallien L, Impson FAC, Kleinjan C, Richardson DM, Le Roux JJ (2017) Unresolved native range taxonomy complicates inferences in invasion ecology: Acacia dealbata Link as an example. Biol Invasions 19:1715–1722

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jay F, Manel S, Alvarez N et al (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol 21:2354–2368

    Article  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T (2015) An introduction to adegenet 2.0.0. http://adegenet.r-forge.r-project.org/files/tutorial-basics.pdf Assessed 12 Feb 2017

  • Jørgensen MH, Elameen A, Hofman N, Klemsdal S, Malaval S, Fjellheim S (2016) What’s the meaning of local? Using molecular markers to define seed transfer zones for ecological restoration in Norway. Evol Appl 9:673–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamvar ZN, Tabima JF, Grunwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamvar ZN, Brooks JC, Grunwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kodela PG, Tindale MD (2001) Acacia dealbata subsp. subalpina (Fabaceae: Mimosiodeae), a new species from South-Eastern Australia. Telopea 9:319–322

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci U S A 111:15296–15303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Roux JJ, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Article  CAS  Google Scholar 

  • Le Roux JJ, Brown GK, Byrne M et al (2011) Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Divers Distrib 17:861–871

    Article  Google Scholar 

  • Le Roux JJ, Richardson DM, Wilson JRU, Ndlovu J (2013) Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha. BMC Ecol 13(37)

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Springer, Boston, pp 139–220

    Chapter  Google Scholar 

  • Leys M, Petit EJ, El-Bahloul Y, Liso C, Fournet S, Arnaud J-F (2014) Spatial genetic structure in Beta vulgaris subsp. maritime and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4:1828–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzo P, Gonzales L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101

    Article  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Evol Syst 15:65–95

    Article  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. Proceedings of the National Institute of Sciences India 12:49–55

    Google Scholar 

  • Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • Maslin BR (2015) Synoptic overview of Acacia sensu lato (Leguminosae: Mimosoideae) in East and Southeast Asia. The Gardens’ Bulletin Singapore 67:231–250

    Article  Google Scholar 

  • Mathiasen P, Premoli A (2016) Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion. Oecologia 181:607–619

    Article  PubMed  Google Scholar 

  • Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contributions of genetics to ecological restoration. Mol Ecol 24:22–37

    Article  PubMed  Google Scholar 

  • Murray BR, Thrall PH, Woods MJ (2001) Acacia species and rhizobial interactions: implications for restoration of native vegetation. Ecol Manag Restor 2:213–219

    Article  Google Scholar 

  • Neville PG, Bossinger G, Ades PK (2010) Phylogeography of the world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia. J Biogeogr 37:179–192

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: community ecology package. R package version 2.4–2. https://CRAN.R-project.org/package=vegan

  • Pannell JR, Fields PD (2014) Evolution in subdivided plant populations: concepts, recent advances and future directions. New Phytol 201:417–432

    Article  PubMed  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  PubMed  CAS  Google Scholar 

  • Peel B (2010) Rainforest restoration manual for south-eastern Australia. CSIRO Publishing

  • Poynton RJ (2009) Tree planting in southern Africa. Other genera, vol 3. Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa

  • Prentis PJ, Sigg DP, Raghu S, Dhileepan K, Pavasovic A, Lowe AJ (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Divers Distrib 15:1–9

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:170–181

    Google Scholar 

  • Pyšek P, Hulme PE, Meyerson LA, et al (2013) Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS 5:plt042

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Sjöstrand AE, Sjödin P, Jakobsson M (2014) Private haplotypes can reveal local adaptation. BMC Genet 15:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasmanian Landcare Group (2013) Restoring our landscape—a basic revegetation guide for fire-affected areas of Tasmania. http://www.nrmsouth.org.au/wp-content/uploads/2014/11/Restoring-our-Landscape-bushfire-recovery-2013-Tasman-and-NRM-South.pdf. Accessed 15 Mar 2017

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75

    Article  Google Scholar 

  • Thompson GD, Robertson MP, Webber BL, Richardson DM, Le Roux JJ, Wilson JRU (2011) Predicting the sub-specific identity of invasive species using distribution models: Acacia saligna as an example. Divers Distrib 17:1001–1014

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Varela S, Lobo JM, Hortal J (2011) Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr Palaeoclimatol Palaeoecol 310:451–463

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographical and ecological isolation. Evolution 76:3403–3411

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsin is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

  • Worth JRP, Jordan GJ, McKinnon GE, Vailancourt RE (2009) The major Australian cool temperate rainforest tree Nothofagus cunninghamii withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytol 182:519–532

    Article  PubMed  CAS  Google Scholar 

  • Worth JRP, Jordan GJ, Marthick JR, McKinnon GE, Vaillancourt RE (2010) Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Mol Ecol 19:2949–2963

    Article  PubMed  CAS  Google Scholar 

  • Worth JRP, Marthick JR, Jordan GJ, Vaillancourt RE (2011) Low but structured chloroplast diversity in Athosperma moschatum (Aterospermataceae) suggests bottlenecks in response to the Pleistocene glacials. Ann Bot 108:1247–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worth JRP, Williamson GJ, Sakaguchi S, Nevill PG, Jordan GJ (2014) Environmental niche modelling fails to predict Last Glacial Maximum refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates? Glob Ecol Biogeogr 23:1189–1197

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.J. Mathese and P.H. Du Preez for their assistance in the laboratory, L. Gallien for advice on statistical approaches, and C. Gairifo, J. Ndlovu, and J.R.U. Wilson for assistance with collecting and/or providing samples used in this study.

Funding

Funding for this study was provided by the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through the collaborative research project “Integrated Management of invasive alien species in South Africa,” a Subcommittee B grant from Stellenbosch University (to JLR), and the Drakenstein Trust. Additional support was provided by the DST-NRF Centre of Excellence for Invasion Biology, Stellenbosch University, and the National Research Foundation of South Africa (grant 85417 to DMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Hirsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by W. Ratnam

Data archiving statement

External transcribed spacer sequencing data used in this study are available at GenBank (accession numbers MH410217 - MH410285).

Electronic supplementary material

ESM 1

(DOCX 492 kb)

ESM 2

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, H., Richardson, D.M., Impson, F.A.C. et al. Historical range contraction, and not taxonomy, explains the contemporary genetic structure of the Australian tree Acacia dealbata Link. Tree Genetics & Genomes 14, 49 (2018). https://doi.org/10.1007/s11295-018-1262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1262-0

Keywords

Navigation