Skip to main content
Log in

Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships among 76 grape genotypes including Chinese indigenous and newly bred varieties, representatives of foreign grape varieties, and wild Vitis species. Nineteen informative primers were selected from 100 SRAP primer pairs due to their ability to produce clearly and repeatedly polymorphic and unambiguous bands among the varieties. A total of 228 bands were produced; 78.63% of them were polymorphic; the average polymorphism information content (PIC) is 0.76. Genetic relationships were obtained using Nei and Li similarity coefficients. Cluster analysis of SRAP markers through the unweighted pair-group method of arithmetic averages (UPGMA) analysis and principal coordinate analysis (PCoA) were largely consistent. The definition of clusters in the dendrogram and PCoA plot is the same and some degree of grouping by types of grape, ecogeographical origin, and taxonomic status of the varieties was revealed. Three main groups were found after cluster analysis, i.e., table grape of Vitis vinifera; table grape of Euro-America hybrid and wine grape of V. vinifera; wild Vitis species. Groupings indicated a divergence between the table and wine-type varieties of V. vinifera. The results showed that the wild Vitis species that originated from America and China could be clearly differentiated and Vitis hancockii is the most distant from the others of Asian Vitis species. The results also indicated that SRAP markers are informative and could distinguish bud sports of grape. The present analysis revealed that Chinese cultivated and wild grape germplasm are highly variable and have abundant genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Alleweldt G, Possingham J (1988) Progress in grapevine breeding. Theor Appl Genet 75(5):669–673

    Article  Google Scholar 

  • Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera. Genet Res 81(3):179–192

    Article  PubMed  CAS  Google Scholar 

  • Argade N, Tamhankar S, Karibasappa G, Patil S, Rao V (2009) DNA profiling and assessment of genetic relationships among important seedless grape (Vitis vinifera) varieties in India using ISSR markers. J Plant Biochem Biot 18(1):45–51

    CAS  Google Scholar 

  • Arroyo-Garcia R, Lefort F, de Andres MT, Ibanez J, Borrego J, Jouve N, Cabello F, Martinez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45(6):1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Bowers J, Meredith C (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J Am Soc Hortic Sci 121(4):620–624

    Google Scholar 

  • Bowers J, Meredith C (1997) The parentage of a classic wine grape, Cabernet sauvignon. Nat Genet 16(1):84–87

    Article  PubMed  CAS  Google Scholar 

  • Bowers J, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285(5433):1562–1565

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I, Dweikat I (2004) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109(2):280–288

    Article  PubMed  CAS  Google Scholar 

  • Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585

    Article  PubMed  Google Scholar 

  • D’Onofrio C, De Lorenzis G, Giordani T, Natali L, Cavallini A, Scalabrelli G (2010) Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genet Genomes 6(3):451–466

    Article  Google Scholar 

  • Dong Q, Cao X, Yang G, Yu H, Nicholas K, Wang C, Fang J (2010) Discovery and characterization of SNPs in Vitis vinifera and genetic assessment of some grapevine cultivars. Sci Horti 125:233–238

    Article  CAS  Google Scholar 

  • Ergül A, Tuerkoglu M, Soeylemezoglu G (2004) Genetic identification of Amasya (Vitis vinifera L. Cvs.) genotypes based on AFLP markers. Biotechnol Biotec Eq 18(3):39–43

    Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Guo DL, Luo ZR (2006) Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet Resour Crop Ev 53(8):1597–1603

    Article  CAS  Google Scholar 

  • Guo DL, Hou XG, Zhang J (2009) Sequence-related amplified polymorphism analysis of tree peony (Paeonia suffruticosa Andrews.) cultivars with different flower colours. J Horti Sci Biotech 84(2):131–136

    CAS  Google Scholar 

  • He PC (1999) Wild grape resources; their utilization in China. Sino-Overseas Grapevine Wine (Special Volume), 1–5 (in Chinese)

  • Heuertz M, Goryslavets S, Hausman J, Risovanna V (2008) Characterization of grapevine accessions from Ukraine using microsatellite markers. Am J Enol Viticult 59(2):169–178

    CAS  Google Scholar 

  • Ishii T, McCouch S (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species. Theor Appl Genet 100(8):1257–1266

    Article  CAS  Google Scholar 

  • Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè M, Valle G, Morgante M, Caboche M, Adam-Blondon A, Weissenbach J, Quétier F, Wincker P, The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Karata H, Ağaoğlu Y (2008) Genetic diversity among Turkish local grape accessions (Vitis vinifera L.) using RAPD markers. Hereditas 145(2):58–63

    Article  Google Scholar 

  • Kong QS (2004) Flora of Chinese Grapes. China Agriculture and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Liu LW, Zhao LP, Gong YQ, Wang MX, Chen LM, Yang JL, Wang Y, Yu FM, Wang LZ (2008) DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci Horti 116(3):240–247

    Article  CAS  Google Scholar 

  • Luo SL, He PC, Zheng XQ, Zhou P (2001) Genetic diversity in wild grapes native to China based on randomly amplified polymorphic DNA (RAPD) analysis. Acta Bot Sin 43(2):158–163

    CAS  Google Scholar 

  • Ma ZS, He PC (1998) A study on the taxonomy and relationship of wild Vitis native to China with POD isozyme. Acta Agri Boreali-Sinica 13(2):122–126

    Google Scholar 

  • Negrul AM (1938) Evolution of cultivated forms of grapes. C R Acad Sci URSS 18:585–588

    Google Scholar 

  • Pelsy F, Hocquigny S, Moncada X, Barbeau G, Forget D, Hinrichsen P, Merdinoglu D (2010) An extensive study of the genetic diversity within seven French wine grape variety collections. Theor Appl Genet 120(6):1219–1231

    Article  PubMed  Google Scholar 

  • Riahi L, Zoghlami N, El-Heit K, Laucou V, Le Cunff L, Boursiquot J, Lacombe T, Mliki A, Ghorbel A, This P (2010) Genetic structure and differentiation among grapevines (Vitis vinifera) accessions from Maghreb region. Genet Res Crop Ev 57(2):255–272

    Article  CAS  Google Scholar 

  • Riaz A, Potter D, Stephen M (2004) Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hort Sci 129:204–210

    Google Scholar 

  • Riaz S, Tenscher AC, Smith BP, Ng DA, Walker MA (2008) Use of SSR markers to assess identity, pedigree, and diversity of cultivated Muscadine grapes. J Am Soc Horti Sci 133(4):559–568

    Google Scholar 

  • Rohlf F (2005) NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.2. Exeter Software: Setauket, New York

  • Sabir A, Tangolar S, Buyukalaca S, Kafkas S (2009) Ampelographic and molecular diversity among grapevine (Vitis spp.) cultivars. Czech J Genet Plant Breed 45(4):160–168

    CAS  Google Scholar 

  • Sefc KM, Pejic I, Maletic E, Thomas MR, Lefort F (2009) Microsatellite markers for grapevine: tools for cultivar identification and pedigree reconstruction (Chapter 21). In: Roubelakis-Angelakis (ed) Grapevine molecular physiology & biotechnology, 2nd edn. Kluwer Publishers, Amsterdam, pp 565–596

  • Smith J, Chin E, Shu H, Smith O, Wall S, Senior M, Mitchell S, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95(1):163–173

    Article  CAS  Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibanez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109(7):1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Scott N (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86(8):985–990

    Article  CAS  Google Scholar 

  • Uzun A, Yesilo T, Aka-Kacar Y, Tuzcu O, Gulsen O (2009) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Horti 121(3):306–312

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma TM, FacciM MJT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  Google Scholar 

  • Vidal J, Coarer M, Defontaine A (1999) Genetic relationships among grapevine varieties grown in different French and Spanish regions based on RAPD markers. Euphytica 109(3):161–172

    Article  CAS  Google Scholar 

  • Walker M, Boursiquot J (1992) Ampelographic and isozyme data correcting the misnaming of the grape rootstock SO4 at the University of California, Davis. Am J Enol Vitic 43:261–265

    CAS  Google Scholar 

  • Wan YZ, Schwaninger H, Li D, Simon CJ, Wang YJ, Zhang CH (2008) A review of taxonomic research on Chinese wild grapes. Vitis 47(2):81–88

    Google Scholar 

  • Wang FS, Zhu CS, Yang DB, Zhang HD (2000) Systematics study on the Genus Chinese Vitis L. of China. J Trop Subtrop Bot 8, 1–10 (in Chinese).

    Google Scholar 

  • Wu YG, Guo QS, He JC, Lin YF, Luo LJ, Liu GD (2010) Genetic diversity analysis among and within populations of Pogostemon cablin from China with ISSR and SRAP markers. Biochem Syst Ecol 38(1):63–72

    Article  Google Scholar 

  • Zhang Y, Zhang X, Hua W, Wang L, Che Z (2010) Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes Genom 32(3):207–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of China (NSFC:30800742), Natural Science Research Program of the Education Department of Henan Province (2009B210003),Young Teacher Funding Program of Henan Higher School (2010GGJS-072) and National Technology System for Grape Industry of China (nycytx-30-zy-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dalong Guo or Chonghuai Liu.

Additional information

Communicated by R. Velasco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Zhang, J., Liu, C. et al. Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers. Tree Genetics & Genomes 8, 789–800 (2012). https://doi.org/10.1007/s11295-011-0464-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0464-5

Keywords

Navigation