Skip to main content
Log in

Intra-allelic variation in introns of the S 13 -RNase allele distinguishes sweet, wild and sour cherries

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The cherry (Prunus avium), a self-incompatible diploid species, and the sour cherry (Prunus cerasus), a self-incompatible or self-compatible allotetraploid species derived from P. avium and Prunus fruticosa, share several S-RNase alleles, including S 13 . An inactive form, S 13 °, is found in some sour cherries. Two (AT) microsatellites are associated with allele S 13 -RNase, one in the first intron and one in the second. Their length polymorphisms were studied in 14 sweet and 17 wild cherries (both P. avium) and in 42 sour cherries. Fluorescent primers amplifying each microsatellite were designed and amplification products sized on an automated sequencer. Variants ranged from 247 to 273 bp for the first intron microsatellite and from 308 to 322 bp for the second. There were 34 combinations and, surprisingly, the lengths of the two microsatellites were correlated. Generally, the sweet, wild and sour cherries had different combinations, and the four examples of S 13 °-RNase were associated with three different combinations. Certain sequences associated with the microsatellites match footprints of transposons. The distribution of combinations indicated little overlap between the three populations analysed and provided useful insights into relationships of some of the accessions allowing some parentages to be checked. In the diploid sweet and wild cherries, S 13 variants presumably resulted from slippage during replication, but in the tetraploid sour cherries, which can have more than one copy of S 13 or S 13 °, intra-allelic crossing over may have generated new variants. The possible involvement of transposable elements in the origin of these microsatellites is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250. doi:10.1111/j.1439-0523.2004.tb02137.x

    Article  Google Scholar 

  • Bošković R, Tobutt KR (2001) Genotyping cherry cultivars assigned to incompatibility groups, by analysing stylar ribonucleases. Theor Appl Genet 103:475–485. doi:10.1007/PL00002906

    Article  Google Scholar 

  • Bošković R, Russell K, Tobutt KR (1997) Inheritance of stylar ribonucleases in cherry progenies, and reassignment of incompatibility alleles to two incompatibility groups. Euphytica 95:221–228. doi:10.1023/A:1002945529157

    Article  Google Scholar 

  • Bošković RI, Wolfram B, Tobutt KR, Cerović R, Sonneveld T (2006) Inheritance and interactions of incompatibility alleles in the tetraploid sour cherry. Theor Appl Genet 112:315–326. doi:10.1007/s00122-005-0130-0

    Article  PubMed  Google Scholar 

  • Brown SK, Iezzoni AF, Fogle HW (1996) Cherries. In: Janick J, Moore JN (eds) Fruit breeding, vol I, Tree and tropical fruits. Wiley, New York, pp 213–255

    Google Scholar 

  • Crane MB, Lawerence WJC (1929) Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J Pomology Hortic Sci 7:276–301

    Google Scholar 

  • De Cuyper B, Sonneveld T, Tobutt KR (2005) Determining self-incompatibility genotypes in Belgian wild cherries. Mol Ecol 14:945–955. doi:10.1111/j.1365-294X.2005.02460.x

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Hedrick UP, Howe GH, Taylor OM, Tubergen CB, Wellington R (1915) The cherries of New York. Lyon, Albany, 371 pp

    Google Scholar 

  • Lewis D, Crowe LK (1954) Structure of the incompatibility gene. IV. Types of mutation in Prunus avium L. Heredity 8:357–363

    Article  Google Scholar 

  • Marchese A, Bošković RI, Clarke J, Motisi A, Raimondo A, Tobutt KR, Caruso T (2005) Fingerprinting of Sicilian cherry germplasm with simple sequence repeats and incompatibility (S) locus primers. Abstracts of First International Conference on Crop Wild Relative Conservation and Use, 14–17 September, Agrigento, Italy

  • Marchese A, Tobutt KR, Raimondo A, Motisi A, Bošković RI, Clarke J, Caruso T (2007a) Morphological characteristics, microsatellite fingerprinting and determination of incompatibility genotypes of Sicilian sweet cherry cultivars. J Hortic Sci Biotechnol 82:41–48

    CAS  Google Scholar 

  • Marchese A, Bošković RI, Caruso T, Raimondo A, Cutuli M, Tobutt KR (2007b) A new self-compatible haplotype in the sweet cherry ‘Kronio’, S 5 ', attributable to a pollen-part mutation in the SFB gene. J Exp Bot 58:4347–4356. doi:10.1093/jxb/erm322

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200. doi:10.1038/ng822

    Article  CAS  PubMed  Google Scholar 

  • Nadir E, Margalit H, Gallily T, Ben-Sasson SA (1996) Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci USA 93:6470–6475

    Article  CAS  PubMed  Google Scholar 

  • Ogašanović D, Ranković M, Nikolić M, Mitrović M, Stamenković S, Tešović Ž, Stanisavljević M, Papić V, Garić R, Plazinić R (1996) New cultivars of fruit developed at Čačak. Institut za istraživanja u poljoprivredi SRBIJA, Subotica Serbia, 214 pp

    Google Scholar 

  • Oldén EJ, Nybom N (1968) On the origin of Prunus cerasus L. Hereditas 59:327–345

    Article  Google Scholar 

  • Ortega E, Sutherland BG, Dicenta F, Bošković R, Tobutt KR (2005) Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed 124:188–196. doi:10.1111/j.1439-0523.2004.01058.x

    Article  CAS  Google Scholar 

  • Ortega E, Bošković RI, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276:413–426. doi:10.1007/s00438-006-0146-4

    Article  CAS  PubMed  Google Scholar 

  • Peace CP, Callahan A, Ogundiwin AE, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hortic 738:639–646

    Google Scholar 

  • Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425. doi:10.1046/j.1365-313X.1999.00392.x

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Flachowsky H, Köhler D (2007) Determination of self-incompatibility genotypes in sweet cherry (Prunus avium L.) accessions and cultivars of the German Fruit Gene Bank and from private collections. Plant Breed 126:533–540. doi:10.1111/j.1439-0523.2007.01401.x

    Article  CAS  Google Scholar 

  • Sonneveld T (2002) The molecular genetics of self-incompatibility in sweet cherry (Prunus avium). Ph.D. thesis, University of Nottingham, UK

  • Sonneveld T, Robbins TP, Bošković R, Tobutt KR (2001) Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor Appl Genet 102:1046–1055. doi:10.1007/s001220000525

    Article  CAS  Google Scholar 

  • Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070. doi:10.1007/s00122-003-1274-4

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld T, Robbins T, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307. doi:10.1111/j.1439-0523.2006.01205.x

    Article  CAS  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    CAS  Google Scholar 

  • Tobutt KR, Sonneveld T, Bekefi Z, Bošković R (2004a) Cherry (in)compatibility genotypes—an updated cultivar table. Acta Hortic 663:667–672

    Google Scholar 

  • Tobutt KR, Bošković R, Cerović R, Sonneveld T, Ružić Đ (2004b) Identification of incompatibility alleles in the tetraploid species sour cherry. Theor Appl Genet 108:775–785. doi:10.1007/s00122-003-1511-x

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto T, Hauck NR, Tao R, Jiang N, Iezzoni AF (2006) Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus). Plant Mol Biol 62:371–383. doi:10.1007/s11103-006-9026-x

    Article  CAS  PubMed  Google Scholar 

  • Vaughan SP, Bošković RI, Gisbert-Climent A, Russell K, Tobutt KR (2008) Characterisation of novel S-alleles from cherry (Prunus avium L.). Tree Genet Genomes 4:531–541. doi:10.1007/s11295-007-0129-6

    Article  Google Scholar 

  • Xu Z, Dooner HK (2005) Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17:375–388. doi:10.1105/tpc.104.027797

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Tao R, Sugiura A, Hauck NR, Iezzoni AF (2001) Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). J Am Soc Hortic Sci 126:661–667

    CAS  Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry. Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from Palermo University and a grant from the Mount Trust.

We thank Marcello Cutuli, Bart De Cuyper, Antonio Raimondo, Karen Russell and Mirko Schuster for kind provision of material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Marchese.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchese, A., Bošković, R.I., Caruso, T. et al. Intra-allelic variation in introns of the S 13 -RNase allele distinguishes sweet, wild and sour cherries. Tree Genetics & Genomes 6, 963–972 (2010). https://doi.org/10.1007/s11295-010-0305-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0305-y

Keywords

Navigation