Skip to main content
Log in

Metamaterial-Inspired Broadband Circularly Polarized SIW Antenna for WLAN/WBAN/ISM Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An antenna design with a coplanar waveguide (CPW) fed wide band circular polarization (CP), inspired by compact metamaterials, is presented in this paper. Substrate Integrated waveguide (SIW), metamaterial with CPW feed, and monopole patch make up its construction. A three-GHz axial ratio bandwidth (ARBW) is obtained by adding a rectangular slot at the monopole stub to produce CP. Incorporating SIW and metamaterial into the antenna design improves gain, directivity, bandwidth, and efficiency. Metamaterial and SIW utilized in the design comprising monopole patch with a stub, slots at the edges and the stub improve the antenna properties efficiently. ISM band, WLAN, and WBAN applications are appropriate for the suggested antenna. The antenna has a 3.6 dBi gain and measures 20 × 20 × 0.8 mm3. A radiation efficiency of 98% and a fractional bandwidth of 63.9% are obtained by incorporating the advantages of CP in a broadband SIW antenna inspired by metamaterials (3.99–7.62 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data and material are available

References

  1. Alsariera, H., Zakaria, Z., Isa, A. A. M., Othman, S., & Al-Heety., M. Y. Zeain., Ahmed I. Abu-Khadrah., & R. Alahnomi, Mussa Mabrok. (2020). compact CPW-Fed broadband circularly polarized monopole antenna with inverted L-shaped strip and asymmetric ground plane. Przegląd Elektrotechniczny, 1, 55–58. https://doi.org/10.15199/48.2020.04.10

    Article  Google Scholar 

  2. Gunavathi, N., Sriramkumar, D., & Shrestha, Uma. (2012). A compact CPW fed triangular shaped slot antenna for WiMax applications. International Journal of Technology and Engineering System., 3(1), 12–16.

    Google Scholar 

  3. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of wide band Microstrip-line-fed antenna with defected ground structure for Ku band applications. AEU - International Journal of Electronics and Communications., 68(10), 951–957. https://doi.org/10.1016/j.aeue.2014.04.017

    Article  Google Scholar 

  4. Kumar, S., Kim, K. W., Choi, H. C., Saxena, S., Tiwari, R., Khandelwal, M. K., Palaniswamy, S. K., & Kanaujia, B. K. (2018). Low profile circularly polarized UWB antenna with integrated GSM band for wireless communication. AEU - International Journal of Electronics and Communications., 93, 224–232. https://doi.org/10.1016/j.aeue.2018.06.027

    Article  Google Scholar 

  5. Kumar, A., Chaturvedi, D., & Raghavan, S. (2018). SIW cavity-backed circularly polarized square ring slot antenna with wide axial-ratio bandwidth. AEU—International Journal of Electronics and Communications, 94, 122–127.

    Google Scholar 

  6. Chaudhary, P., & Kumar, A. (2019). Compact ultra-wideband circularly polarized CPW-fed monopole antenna. AEU—International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2019.05.025

    Article  Google Scholar 

  7. Ameen, M., Ahmad, O., & Chaudhary, R. K. (2020). Single split-ring resonator loaded self-decoupled dual-polarized MIMO antenna for mid-band 5G and C-band applications. AEU—International Journal of Electronics and Communications, 124, 85. https://doi.org/10.1016/j.aeue.2020.153336

    Article  Google Scholar 

  8. Chen, Bo., Jiao, Y.-C., Ren, F.-C., & Zhang, Li. (2012). Broadband monopole antenna with wideband circular polarization. Progress In Electromagnetics Research Letters, 32, 19–28. https://doi.org/10.2528/PIERL12032807

    Article  Google Scholar 

  9. Pushkar, P., & Gupta, V. R. (2016). A metamaterial based tri-band antenna for WiMAX/WLAN application. Microwave and Optical Technology Letters, 58(3), 558–561. https://doi.org/10.1002/mop.29616

    Article  Google Scholar 

  10. Z. H. Jiang, Q. Wu and D. H. Werner. (2013). A low-profile high-gain SIW slot antenna using anisotropic zero-index metamaterial coating. In 2013 IEEE antennas and propagation society international symposium (APSURSI), (pp. 124–125). https://doi.org/10.1109/APS.2013.6710723

  11. Dr, S., Anand, M., & Prashalee, P. (2021). High gain compact multiband cavity-backed SIW and metamaterial unit cells with CPW feed antenna for S, and Ku band applications. Wireless Personal Communications., 118(2), 1621–1634. https://doi.org/10.1007/s11277-021-08107-w

    Article  Google Scholar 

  12. Chaturvedi, D., & Raghavan, S. (2018). A half-mode SIW cavity-backed semi-hexagonal slot antenna for WBAN application. IETE Journal of Research. https://doi.org/10.1080/03772063.2018.1452644

    Article  Google Scholar 

  13. Chaturvedi, D., & Singaravelu, R. (2018). A dual-band half-mode substrate integrated waveguide-based antenna for WLAN/WBAN applications. International Journal of RF and Microwave Computer-Aided Engineering., 28(1), 85. https://doi.org/10.1002/mmce.21239

    Article  Google Scholar 

  14. Anand, S., & Rokhini, D. (2019). A double line SIW cavity backed antenna for WLAN applications. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.21861

    Article  Google Scholar 

  15. Begaud, J. S. C. L. C. L. B. (2012). Dual-band artificial magnetic conductor. Applied Physics A, 109(4), 1075–1080. https://doi.org/10.1007/s00339-012-7409-1

    Article  Google Scholar 

  16. Si, L. M., Zhu, W., & Sun, H. J. A. (2013). A compact, planar, and CPW-Fed metamaterial-inspired dual-band antenna. IEEE Antennas and Wireless Propagation Letters, 12, 305–308. https://doi.org/10.1109/LAWP.2013.2249037

    Article  Google Scholar 

  17. Mrs, A., & Chithra, Dr.R. Shantha Selvakumari. (2018). A new energy efficient clustering protocol for a novel concentric circular wireless sensor network. Wireless Personal Communications, 103(03), 2455–2473. https://doi.org/10.1007/s11277-018-5937-5

    Article  Google Scholar 

  18. Selvakumari, R. S., & Kumar, M. K. (2012). Miniaturized dual band monopole antenna design for wireless communications. International Journal of Engineering and Innovative Technology., 1(6), 237–241.

    Google Scholar 

  19. Paulkani, I., & Indumathi, G. (2020). Design of Sierpinski knopp inspired fractal antenna for public safety applications. Wireless Personal Communications, 114(1), 227–239. https://doi.org/10.1007/s11277-020-07360-9

    Article  Google Scholar 

  20. Miss, V., Kanni, R., & Brinda, R. (2019). Design of high gain microstrip antenna for vehicle to vehicle communication using genetic algorithm. Progress In Electromagnetics Research, 81(1), 167–179. https://doi.org/10.2528/PIERM19040505

    Article  Google Scholar 

  21. Anand, S., & Prashalee, P. (2022). Wide axial ratio bandwidth dual polarized S, C, X, and Ku band antenna using orthogonal SIW. Wireless Personal Communications, 122(3), 2885–2903. https://doi.org/10.1007/s11277-021-09034-6

    Article  Google Scholar 

  22. Althuwayb, A. A. (2021). Enhanced radiation gain and efficiency of a matameterial-inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems. Microwave and Optical Technology Letters, 2021(63), 1892–1898. https://doi.org/10.1002/mop.32825

    Article  Google Scholar 

  23. Jairath, K., Singh, N., Shabaz, M., Jagota, V., & Singh, B. K. (2022). Performance analysis of metamaterial-inspired structure loaded antennas for narrow range wireless communication. Hindawi Scientific Programming. https://doi.org/10.1155/2022/7940319

    Article  Google Scholar 

  24. Venkateswara Rao, M., Madhav, B. T. P., Anilkumar, T., & Prudhvi Nadh, B. (2018). Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. AEU-International Journal of Electronics and Communications, 97(2018), 229–241. https://doi.org/10.1016/j.aeue.2018.10.018

    Article  Google Scholar 

  25. Sarin, V. P., Raj, R. K., Sreekala, P. S., et al. (2023). A metamaterial inspired low-scattering electric quadrupole antenna. Wireless Personal Communications, 132, 131–145. https://doi.org/10.1007/s11277-023-10595-x

    Article  Google Scholar 

  26. Chaturvedi, D., & Raghavan, S. (2019). A compact metamaterial-inspired antenna for WBAN application. Wireless Personal Communications, 105, 1449–1460. https://doi.org/10.1007/s11277-019-06153-z

    Article  Google Scholar 

  27. Devana, V. N. K. R., & Rao, A. M. (2019). Compact UWB monopole antenna with quadruple band notched characteristics. International Journal of Electronics, 107(2), 175–196. https://doi.org/10.1080/00207217.2019.1636311

    Article  Google Scholar 

  28. Zhu, X.-Q., Guo, Y.-X., & Wu, W. (2016). A compact dual-band antenna for wireless body-area network applications. IEEE Antennas and Wireless Propagation Letters, 15, 98–101. https://doi.org/10.1109/LAWP.2015.2431822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—S. Selva Nidhyanandhan & P. Prashalee, Methodology & Implementation—P. Prashalee, Result interpretation—S. Anand, Manuscript drafting S. Selva Nidhyanandhan & P. Prashalee

Corresponding author

Correspondence to S. Selva Nidhyananthan.

Ethics declarations

Conflict of intrest

The author does not have any conflict of interest to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selva Nidhyananthan, S., Prashalee, P. & Anand, S. Metamaterial-Inspired Broadband Circularly Polarized SIW Antenna for WLAN/WBAN/ISM Applications. Wireless Pers Commun 134, 1697–1711 (2024). https://doi.org/10.1007/s11277-024-10995-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10995-7

Keywords

Navigation