Skip to main content
Log in

Review of State-of-the-Art Microwave Filter Tuning Techniques and Implementation of a Novel Tuning Algorithm Using Expert-Based Hybrid Learning

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2024

This article has been updated

Abstract

Present-day demand and supply of connectivity necessitate the rapid production of Microwave (MW) filter units. The production of these filters is then followed by the step of utmost importance in the assembly line, viz., the ‘tuning of the filter’, as tuning is crucial to meeting the selectivity requirements of the band. Since the advent of filters, tuning has always been done manually, and hence it is considered a bottleneck by experts in the field. Thus, the need to automate the system is highly implied. The goal of the current work is to outline various MW filter tuning techniques that have been advocated by the community of researchers. The limitations of the said research works and their comparative analysis are also encapsulated in tabular form in the present paper. The paper ends with the implementation of an Expert-Based Hybrid Deep Learning Algorithm to fully automate the filter tuning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

It is an extensive literature survey paper with an implementation of a novel approach. All required data has been mentioned in the manuscript and no other data is required.

Code Availability (Software Application or Custom Code)

It is an extensive Literature survey paper. This is not applicable.

Change history

References

  1. Brian Thomas, J. (2003). Cross-coupling in coaxial cavity filters—A tutorial overview. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1368–1376. https://doi.org/10.1109/TMTT.2003.809180

    Article  Google Scholar 

  2. Amari S., and Bornemann J, (2000). Maximum number of finite transmission zeros of coupled resonator filters with source/load-multiresonator coupling and a given topology. In Asia-Pacific Microwave Conference Proceedings, APMC 2000, Sydney, NSW, Australia, Sydney, Australia. pp. 1175–1177. doi: https://doi.org/10.1109/apmc.2000.926040

  3. Zhang, Y. L. (2018). Improved matrix synthesis for inline filters with transmission zeros generated by FVC. Progress In Electromagnetics Research M, 76, 9–17. https://doi.org/10.2528/PIERM18101502

    Article  Google Scholar 

  4. Ruiz-Cruz, J. A., Wang, C., & Zaki, K. A. (2008). Advances in microwave filter design techniques. Microwave Journal, 51, 26–44.

    Google Scholar 

  5. Yao H. W., Wang C., and Zaki K. A., (1996). Effects of tuning structures on combline filters. In 1996 26th European Microwave Conference, EuMC 1996, Prague, Czech Republic. pp. 427–430. doi: https://doi.org/10.1109/EUMA.1996.337605.

  6. Chuma, J. M., & Mirshekar-Syahkal, D. (2002). Effects of walls on coupling between coupled combline resonators. IEE Proceedings: Microwaves, Antennas and Propagation, 149(1), 53–56. https://doi.org/10.1049/ip-map:20020180

    Article  Google Scholar 

  7. Han, L., Wu, K., Chen, X.-P., & He, F. (2010). Influence and tuning of tunable screws for microwave filters using least squares support vector regression. International Journal of RF and Microwave Computer-Aided Engineering, 20(4), 422–429. https://doi.org/10.1002/mmce

    Article  Google Scholar 

  8. Lindner A., Biebl E., and Strasse A.,(2006). A manual tuning method for coupled cavity filters. In Proceedings of 36th European Microwave Conference, Manchester, UK. pp. 1340–1342.

  9. Yu M., (1994). Computer aided tuning. COM DEV Internal Report.

  10. Yu, M. (2006). Robotic computer-aided tuning (COM DEV Ltd.). Microw J (Int Ed). https://doi.org/10.11139/cj.29.3.507-531

    Article  Google Scholar 

  11. Yu, M., (2003). A fully automated filter tuning robot for wireless base station diplexers – presentation. In IEEE International Microwave Symposium - Workshop: Computer Aided Filter Tuning, (IMS 2003), Philadelphia, Pennsylvania. doi: https://doi.org/10.13140/2.1.4648.1923.

  12. Jervis, B. W., & Crofts, M. (1991). Comparison of computer-aided tuning algorithms applied to the amplitude response of passive analogue filters. IEE Proceedings G - Circuits, Devices and Systems, 138(3), 363–371. https://doi.org/10.1049/ip-g-2.1991.0062

    Article  Google Scholar 

  13. Dunsmore J., (1999). Tuning band pass filters in the time domain. In 1999 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, USA. pp. 1351–1354. doi: https://doi.org/10.1109/MWSYM.1999.779638

  14. “Simplified Filter Tuning Using Time Domain, Application Note, AN 1287–8, 1999, (Republished in 2000 by Agilent as 5968–5328E).”

  15. Dunsmore, J. (2000). “Duplex filter tuning using time domain transforms, 2000 30th European Microwave Conference. EuMC, 2000, 6–9. https://doi.org/10.1109/EUMA.2000.338794

    Article  Google Scholar 

  16. Dunsmore J., (1999). Advanced filter tuning using time domain transforms. In 29th European Microwave Conference, EuMC 1999, Munich Germany. pp. 72–75. doi: https://doi.org/10.1109/EUMA.1999.338412

  17. “Network Analysis Solutions Advanced Filter Tuning Using Time Domain Transforms, Application Note 5980–2785EN, 1999 (Republished by Keysight in 2017).”

  18. Burger S. and Hoeft M., (2014). Improved filter tuning in the time domain. In 1st Australian Microwave Symposium, ASM 2014, Melbourne, VIC, Australia, Melbourne, VIC, Australia: IEEE. pp. 27–28. doi: https://doi.org/10.1109/AUSMS.2014.7017349

  19. Dishal, M. (1951). Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters. Proceedings of the IRE, 39(11), 1448–1455. https://doi.org/10.1109/JRPROC.1951.273611

    Article  Google Scholar 

  20. Atia, A. E., & Williams, A. E. (1975). Measurements of intercavity couplings. IEEE Transactions on Microwave Theory and Techniques, 23(6), 519–522. https://doi.org/10.1109/TMTT.1975.1128614

    Article  Google Scholar 

  21. Atia, A., Williams, A., & Newcomb, R. (1974). Narrow-band multiple-coupled cavity synthesis. IEEE Trans Circuits Syst, 21(5), 649–655. https://doi.org/10.1109/TCS.1974.1083913

    Article  Google Scholar 

  22. Chen, M. H. (1977). Short-circuit tuning method for singly terminated filters. IEEE Transactions on Microwave Theory and Techniques, 25(12), 1032–1036.

    Article  Google Scholar 

  23. Accatino L., (1986). Computer-aided tuning of microwave filters. In 1986 IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, USA. pp. 249–252

  24. Ness, J. B. (1998). A unified approach to the design, measurement and tuning of coupled-resonator filters. IEEE Transactions on Microwave Theory and Techniques, 46(4), 343–351. https://doi.org/10.1109/22.664135

    Article  Google Scholar 

  25. Ness, J. B. (1998). Alignment of cross-coupled resonator filter using the group delay technique. Microwave and Optical Technology Letters, 18(3), 174–179.

    Article  Google Scholar 

  26. Zahirovic N., and Mansour R. R., (2008). Sequential tuning of coupled resonator filters using hilbert transform derived relative group delay. In 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA. pp. 739–742

  27. P. Perry and T. J. Brazil, (1996). Hilbert-transform-derived relative group delay measurement of frequency conversion systems. In IEEE MTT-S Int. Microw. Symp. Dig, San Francisco, CA, USA: IEEE, pp. 1695–1698. doi: https://doi.org/10.1109/MWSYM.1996.512267.

  28. Pepe, G., Görtz, F. J., & Chaloupka, H. (2005). Sequential tuning of microwave filters using adaptive models and parameter extraction. IEEE Transactions on Microwave Theory and Techniques, 53(1), 22–31. https://doi.org/10.1109/TMTT.2004.839342

    Article  Google Scholar 

  29. A. Lindner, H. Kugler, and E. Biebl, (2007). Manual filter tuning by cloning frequency domain data. In European Microwave Conference, EUMC 2007, Munich Germany. pp. 329–331. doi: https://doi.org/10.1109/EUMC.2007.4405193

  30. Michalski, J. J. (2011). Inverse modeling in application for sequential filter tuning. Progress In Electromagnetics Research, 115, 113–129.

    Article  Google Scholar 

  31. Atia, A. E., & Williams, A. E. (1971). New types of waveguide bandpass filters for satellite transponders. The COMSAT Technical Review, 1(1), 21–44.

    Google Scholar 

  32. J. Marquardt and G. Muller, (1977). Computer-aided tuning of microwave circuits. In IEEE MTT-S International Microwave Symposium Digest, San Diego, CA, USA, San Diego, CA, USA, USA. pp. 147–150. doi: https://doi.org/10.1109/MWSYM.1977.1124388.

  33. Atia A. E., and Yao H., (2000). Tuning & measurements of couplings and resonant frequencies for cascaded resonators. In 2000 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA. pp. 1637–1640

  34. Hsu, H. T., Yao, H., Zaki, K. A., & Atia, A. E. (2002). Computer-aided diagnosis and tuning of cascaded coupled resonators filters. IEEE Transactions on Microwave Theory and Techniques, 50(4), 1137–1145.

    Article  Google Scholar 

  35. Hsu, H. T., Zhang, Z., Zaki, K. A., & Atia, A. E. (2002). Parameter extraction for symmetric coupled-resonator filters. IEEE Transactions on Microwave Theory and Techniques, 50(12), 2971–2978. https://doi.org/10.1109/TMTT.2002.805283

    Article  Google Scholar 

  36. Ghadiya A., and Soni S., (2014). Sequential parameter extraction of direct-coupled resonator filter. In 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, India, IEEE. pp. 25–29. doi: https://doi.org/10.1109/CSNT.2014.14.

  37. Cameron, R. J. (1999). General coupling matrix synthesis methods for chebyshev filtering functions. IEEE Transactions on Microwave Theory and Techniques, 47(4), 433–442.

    Article  Google Scholar 

  38. Cameron, R. J. (2003). Advanced coupling matrix synthesis techniques for microwave filters. IEEE Transactions on Microwave Theory and Techniques, 51(1), 1–10.

    Article  MathSciNet  Google Scholar 

  39. Meng, W., & Wu, K. L. (2006). Analytical diagnosis and tuning of narrowband multicoupled resonator filters. IEEE Transactions on Microwave Theory and Techniques, 54(10), 3765–3771. https://doi.org/10.1109/TMTT.2006.881623

    Article  Google Scholar 

  40. Kabir, H., Wang, Y., Yu, M., & Zhang, Q. J. (2010). High-dimensional neural-network technique and applications to microwave filter modeling. IEEE Transactions on Microwave Theory and Techniques, 58(1), 145–156. https://doi.org/10.1109/TMTT.2009.2036412

    Article  Google Scholar 

  41. Meng, M., & Wu, K. L. (2009). An analytical approach of extracting coupling matrix and unloaded Q of a bandpass filter. IEEE MTT-S International Microwave Symposium Digest. https://doi.org/10.1109/MWSYM.2009.5165954

    Article  Google Scholar 

  42. Meng, M., & Wu, K. L. (2009). An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3188–3195. https://doi.org/10.1109/TMTT.2009.2033868

    Article  Google Scholar 

  43. Wang, R., Li, L. Z., & Peng, L. (2014). Diagnosis of lossy resonator filters with source-load coupling using Y-parameters. International Journal of RF and Microwave Computer-Aided Engineering, 24(6), 713–717. https://doi.org/10.1002/mmce.20816

    Article  Google Scholar 

  44. Cameron, R. J., Kudsia, A. C. M., & Mansour, R. R. (2007). Microwave filters for communication systems —fundamentals, design and applications (2nd edn). USA: Wiley. https://doi.org/10.1002/9781119292371

    Book  Google Scholar 

  45. Wang, R., Li, L.-Z., & Peng, L. (2015). Improved diagnosis of lossy resonator bandpass filters using Y-parameters. International Journal of RF and Microwave Computer-Aided Engineering, 25(9), 807–814. https://doi.org/10.1002/mmce.20919

    Article  Google Scholar 

  46. Gustavsen, B., & Semlyen, A. (1999). Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 14(3), 1052–1061. https://doi.org/10.1016/0001-8708(78)90008-7

    Article  Google Scholar 

  47. Gustavsen, B. (2006). Improving the pole relocating properties of vector fitting. IEEE Transactions on Power Delivery, 21(3), 1587–1592. https://doi.org/10.1109/TPWRD.2005.860281

    Article  Google Scholar 

  48. Liao, C. K., Chang, C. Y., & Lin, J. (2007). A vector-fitting formulation for parameter extraction of lossy microwave filters. IEEE Microwave and Wireless Components Letters, 17(4), 277–279. https://doi.org/10.1109/LMWC.2007.892970

    Article  Google Scholar 

  49. Hu, H., & Wu, K. L. (2014). A generalized coupling matrix extraction technique for bandpass filters with uneven-Qs. IEEE Transactions on Microwave Theory and Techniques, 62(2), 244–251. https://doi.org/10.1109/TMTT.2013.2296744

    Article  Google Scholar 

  50. Adve, R. S., & Sarkar, T. K. (1993). Generation of accurate broadband information from narrowband data using the cauchy method. Microwave and Optical Technology Letters, 6(10), 569–573. https://doi.org/10.1002/mop.4650061002

    Article  Google Scholar 

  51. Dhaene T., Ureel J., Fache N., and De Zutter D., (1995). Adaptive frequency sampling algorithm for fast and accurate S-parameter modeling of general planar structures. In Proceedings of 1995 IEEE MTT-S International Microwave Symposium Digest, Orlando, FL, USA. pp. 1427–1430. doi: https://doi.org/10.1109/mwsym.1995.406240.

  52. Adve, R. S., Sartar, T. K., Rao, S. M., Miller, E. K., & Pflug, D. R. (1997). Application of the cauchy method for extrapolating/interpolating narrow-band system responses. IEEE Transactions on Microwave Theory and Techniques, 45(5), 837–845. https://doi.org/10.1109/22.575608

    Article  Google Scholar 

  53. Matthaei G. L., Young L., and Jones E. M. T., (1964). Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Norwood, MA, 02062: Artech House

  54. Van Huffel S., and Vandewalle J. P. L., (1991). The total least squares problem: computational aspects and analysis. Philedelphia: Society for Industrial and Applied Mathematics.

  55. Lamperez A. G., Sarkar T. K., and Palma M. S., (2002). Filter model generation from scattering parameters using cauchy method. In 2002 32nd European Microwave Conference, Milan, Italy. pp. 1–4.

  56. García-Lampérez, A., Llorente-Romano, S., Salazar-Palma, M., & Sarkar, T. K. (2004). Efficient electromagnetic optimization of microwave filters and multiplexers using rational models. IEEE Transactions on Microwave Theory and Techniques, 52(2), 508–521. https://doi.org/10.1109/TMTT.2003.822021

    Article  Google Scholar 

  57. Lampérez, A. G., Sarkar, T. K., & Palma, M. S. (2004). Generation of accurate rational models of lossy systems using the cauchy method. IEEE Microwave and Wireless Components Letters, 14(10), 490–492. https://doi.org/10.1109/LMWC.2004.834576

    Article  Google Scholar 

  58. Macchiarella, G., & Traina, D. (2006). A formulation of the cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements. IEEE Microwave and Wireless Components Letters, 16(5), 243–245. https://doi.org/10.1109/LMWC.2006.873583

    Article  Google Scholar 

  59. Traina D., Macchiarella G., and Bertelli J., (2006). Computer-aided tuning of GSM base-station filters-experimental results. In 2006 IEEE Radio and Wireless Symposium, San Diego, CA, USA. pp. 587–590. doi: https://doi.org/10.1109/RWS.2006.1615225.

  60. Tamiazzo, S., & Macchiarella, G. (2005). An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations. IEEE Transactions on Microwave Theory and Techniques, 53(5), 1693–1698. https://doi.org/10.1109/TMTT.2005.847065

    Article  Google Scholar 

  61. Esmaeili M., and Borji A., (2010). Diagnosis and tuning of multiple coupled resonator filters. In 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, Isfahan, Iran, IEEE. pp. 124–129. doi: https://doi.org/10.1109/IRANIANCEE.2010.5507088.

  62. Kozakowski, P., Lamecki, A., Sypek, P., & Mrozowski, M. (2005). Eigenvalue approach to synthesis of prototype filters with source/load coupling. IEEE Microwave and Wireless Components Letters, 15(2), 98–100. https://doi.org/10.1109/LMWC.2004.842838

    Article  Google Scholar 

  63. Macchisrella, G. (2010). Extraction of unloaded Q and coupling matrix from measurements on filters with large losses. IEEE Microwave and Wireless Components Letters, 20(6), 307–309. https://doi.org/10.1109/LMWC.2010.2047455

    Article  Google Scholar 

  64. Wang, R., & Xu, J. (2011). Computer-aided diagnosis of lossy microwave coupled resonators filters. International Journal of RF and Microwave Computer-Aided Engineering, 21(5), 519–525. https://doi.org/10.1002/mmce.20537

    Article  Google Scholar 

  65. Wang, R., & Xu, J. (2011). Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters. Progress In Electromagnetics Research, 115, 303–315. https://doi.org/10.2528/PIER11021604

    Article  Google Scholar 

  66. Wang, R., Xu, J., Wei, C. L., Wang, M. Y., & Zhang, X. C. (2011). Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters. Progress in Electromagnetics Research, 120, 67–81. https://doi.org/10.2528/PIER11072804

    Article  Google Scholar 

  67. Cao, W. H., Liu, C., Yuan, Y., & Wu, M. (2018). Extracting coupling matrix from lossy filters with uneven-Qs using differential evolution optimization technique. International Journal of RF and Microwave Computer-Aided Engineering, 28(6), 1–10. https://doi.org/10.1002/mmce.21269

    Article  Google Scholar 

  68. Zhao, P., & Wu, K. L. (2016). A new computer-aided tuning scheme for general lossy coupled-resonator bandpass filters based on the cauchy method. HKIE Transactions, 23(1), 52–62. https://doi.org/10.1080/1023697X.2015.1129292

    Article  Google Scholar 

  69. Guyette, A. C., Hunter, I. C., & Pollard, R. D. (2006). The design of microwave bandpass filters using resonators with non-uniform Q. IEEE Transactions on Microwave Theory and Techniques, 54(11), 3914–3921. https://doi.org/10.1109/TMTT.2006.884627

    Article  Google Scholar 

  70. Thal, H. L. (1978). Computer-aided filter alignment and diagnosis. IEEE Transactions on Microwave Theory and Techniques, 26(12), 958–963.

    Article  Google Scholar 

  71. Harscher, P., & Vahldieck, R. (2001). Automated tuning of waveguide filters using adaptive network models. IEEE Transactions on Microwave Theory and Techniques, 49(11), 2125–2130.

    Article  Google Scholar 

  72. Harscher P., Vahldieck R., and Amari S.,(2001). Automated test and tuning system for microwave filters. In IEEE MTT-S International Microwave Symposium Digest (Cat. No.01CH37157), Phoenix, AZ, USA. pp. 1543–1546. doi: https://doi.org/10.1109/MWSYM.2001.967197.

  73. Harscher, P., Vahldieck, R., & Amari, S. (2001). Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2532–2538. https://doi.org/10.1109/22.971646

    Article  Google Scholar 

  74. Kahrizi M., Safavi-naeini S., and Chaudhuri S. K., (2000). Computer diagnosis and tuning of filters using model-based parameter estimation and multi-level optimization. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), Boston, MA, USA. pp. 1641–1644.

  75. Kahrizi, M., Safavi-naeini, S., Chaudhuri, S. K., & Sabry, R. (2002). Computer diagnosis and tuning of rf and microwave filters using model-based parameter extraction. IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, 49(9), 1263–1270.

    Article  Google Scholar 

  76. Miller, E. K., & Burke, G. J. (1991). Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics. Computer Physics Communications, 68(1–3), 43–75. https://doi.org/10.1016/0010-4655(91)90193-O

    Article  Google Scholar 

  77. Boggs, P. T., & Tolle, J. W. (1995). Sequential quadratic programming. Acta Numerica, 4, 1–51. https://doi.org/10.1017/S0962492900002518

    Article  MathSciNet  Google Scholar 

  78. Bandler, J. W., Biernacki, R. M., Chen, S. H., Grobelny, P. A., & Hemmers, R. H. (1994). Space mapping technique for electromagnetic optimization. IEEE Transactions on Microwave Theory and Techniques, 42(12), 2536–2544. https://doi.org/10.1109/22.339794

    Article  Google Scholar 

  79. Bandler, J. W., Biernacki, R. M., Chen, S. H., Hemmers, R. H., & Madsen, K. (1995). Electromagnetic optimization exploiting aggressive space mapping. IEEE Transactions on Microwave Antennas Propagation, 43(12), 2874–2882.

    Google Scholar 

  80. Bandler, J. W., Cheng, Q. S., Nikolova, N. K., & Ismail, M. A. (2004). Implicit space mapping optimization exploiting preassigned parameters. IEEE Transactions on Microwave Theory and Techniques, 52(1), 378–385. https://doi.org/10.1109/TMTT.2003.820892

    Article  Google Scholar 

  81. Bandler, J. W., et al. (2004). Space mapping: The state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(1), 337–361. https://doi.org/10.1109/TMTT.2003.820904

    Article  Google Scholar 

  82. Cheng Q. S., Bandler J. W., and Koziel S., (2015). A review of implicit space mapping optimization and modeling techniques. In 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO 2015), Ottawa, ON, Canada, IEEE. pp. 1–3. doi: https://doi.org/10.1109/NEMO.2015.7415041.

  83. Rayas-Sánchez, J. E. (2016). Power in simplicity with ASM: Tracing the aggressive space mapping algorithm over two decades of development and engineering applications. IEEE Microwave Magazine, 17(4), 64–76. https://doi.org/10.1109/MMM.2015.2514188

    Article  Google Scholar 

  84. Miek D., and Höft M., (2018). Compensation of cross-dependencies in computer aided tuning of microwave filters by simplified space mapping approach. In 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO 2018), Reykjavik, Iceland. pp. 1–4.

  85. Muller A., Soto P., and Boria V. E., (2017). Design procedure for coaxial combline filters based on segmentation and space mapping strategies. In 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO 2017), Seville, Spain. pp. 13–15. doi: https://doi.org/10.1109/NEMO.2017.7964171.

  86. S. Li, X. Fan, P. D. Laforge, and Q. S. Cheng, (2019). A post-fabrication tuning method using space mapping and surrogate modeling techniques. In 2019 49th European Microwave Conference, (EuMC 2019), Paris, France, Paris, France: European Microwave Association (EuMA). pp. 392–395. doi: https://doi.org/10.23919/EuMC.2019.8910767.

  87. A. Rodriguez et al., (2017). Robust optimization and tuning of microwave filters and artificial transmission lines using aggressive space mapping techniques. In 2017 IEEE MTT-S International Microwave Symposium (IMS 2017), Honololu, HI, USA. pp. 1501–1504. doi: https://doi.org/10.1109/MWSYM.2017.8058909

  88. Li, S., Fan, X., Laforge, P. D., & Cheng, Q. S. (2020). Surrogate model-based space mapping in postfabrication bandpass filters’ tuning. IEEE Transactions on Microwave Theory and Techniques, 68(6), 2172–2182. https://doi.org/10.1109/tmtt.2020.2977022

    Article  Google Scholar 

  89. Bandler J. W., Biernacki R. M., and Chen S. H., (1996). Fully automated space mapping optimization of 3D structures. In 1996 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA. pp. 1–4. doi: https://doi.org/10.1109/mwsym.1996.511048

  90. Bakr, M. H., Bandler, J. W., & Georgieva, N. (1999). An aggressive approach to parameter extraction. IEEE Transactions on Microwave Theory and Techniques, 47(12), 2428–2439. https://doi.org/10.1109/mwsym.1999.779470

    Article  Google Scholar 

  91. Bode H. W., (1945). Network analysis and feedback amplifier design. doi: https://doi.org/10.1183/09031936.00138507.

  92. Pinel, J. F. (1971). Computer-aided network tuning. IEEE Transactions on Circuit Theory, 18(1), 192–194.

    Article  Google Scholar 

  93. Marshall, P. M., & Tissi, P. (1991). A new algorithm for the accurate alignment of microwave networks. IEEE Transactions on Microwave Theory and Techniques, 39(10), 1754–1758. https://doi.org/10.1109/22.88547

    Article  Google Scholar 

  94. Cegielski T., and Michalski J., (2008). Heuristic methods for automated microwave filter tuning. In 2008 17th International Conference on Microwaves, Radar and Wireless Communications (MIKON 2008). pp. 1–4.

  95. Kirkpatrick, S., Jr., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  Google Scholar 

  96. Lewis, R. M., Torczon, V., Trosset, M. W., & William, C. (2000). Direct search methods : then and now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207.

    Article  MathSciNet  Google Scholar 

  97. “Intelligent Automatic Filter Tuning Tool (IAFTT): European Patent Application No. P382895 assigned by Polish National Patent Office,” 2007

  98. Miraftab V., and Mansour R. R., (2002). Computer-aided tuning of microwave filters using fuzzy logic. In IEEE MTT-S Int. Microw. Symp. Dig. pp. 1117–1120. doi: https://doi.org/10.1109/MWSYM.1986.1132161.

  99. Miraftab, V., & Mansour, R. R. (2002). Computer-aided tuning of microwave filters using fuzzy logic. IEEE Transactions on Microwave Theory and Techniques, 50(12), 2781–2788. https://doi.org/10.1109/TMTT.2002.805291

    Article  Google Scholar 

  100. Miraftab, V., & Mansour, R. R. (2004). A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters. IEEE Transactions on Microwave Theory and Techniques, 52(1), 450–456. https://doi.org/10.1109/TMTT.2003.820895

    Article  Google Scholar 

  101. Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3), 267–278. https://doi.org/10.3233/IFS-1994-2306

    Article  Google Scholar 

  102. Miraftab V., and Mansour R. R., (2006). Automated microwave filter tuning by extracting human experience in terms of linguistic rules using fuzzy controllers. In 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 2006, pp. 1439–1442. doi: https://doi.org/10.1109/MWSYM.2006.249541

  103. Miraftab, V., & Mansour, R. R. (2008). Fully automated RF/Microwave filter tuning by extracting human experience using fuzzy controllers. IEEE Transactions on Circuits and Systems - I : Regular Papers, 55(5), 1357–1367. https://doi.org/10.1109/TCSI.2008.916614

    Article  MathSciNet  Google Scholar 

  104. Peng S., Cao W., Bi L., Yuan Y., and Wu M., (2021). A tuning strategy for microwave filter using variable universe adaptive fuzzy logic system. In Proceeding - 2021 China Automation Congress, CAC 2021, Beijing - China, Institute of Electrical and Electronics Engineers Inc., pp. 6061–6066. doi: https://doi.org/10.1109/CAC53003.2021.9727379.

  105. Bi, L., Cao, W., Hu, W., & Wu, M. (2022). A dynamic-attention-based heuristic fuzzy expert system for the tuning of microwave cavity filters. IEEE Transactions on Fuzzy Systems, 30(9), 3695–3707. https://doi.org/10.1109/TFUZZ.2021.3124643

    Article  Google Scholar 

  106. Michalski, J. J. (2010). Artificial neural networks approach in microwave filter tuning. Progress In Electromagnetics Research M, 13, 173–188.

    Article  Google Scholar 

  107. Michalski J. J, (2010). Artificial neural network algorithm for automated filter tuning with improved efficiency by usage of many golden filters. In 2010 18th International Conference on Microwave Radar and Wireless Communications (MIKON 2010), Vilnius, Lithuania. pp. 1–3.

  108. Michalski, J. J., Kacmajor, T., Gulgowski, J., & Mazur, M. (2011). Consideration on artificial neural network architecture in application for microwave filter tuning. Piers Online, 7(3), 271–275.

    Google Scholar 

  109. Kacmajor T., and Michalski J. J., (2011). Principal component analysis in application for filter tuning algorithms. In 2011 IEEE MTT-S International Microwave Workshop- Series on Millimeter Wave Integration Technologies, Sitges, Spain, Sitges, Spain. pp. 121–123

  110. Michalski J. J., and Kacmajor T., (2011). Filter tuning algorithm with compressed reflection characteristic by daubechies D4 wavelet transform. In 2011 41st European Microwave Conference (EuMC 2011), Manchester, UK, 2011, pp. 778–781

  111. Kacmajor T., Kant P., and Michalski J. J., (2014). Microwave filter tuning for different center frequencies based on artificial neural network and phase compensation. In 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON 2014), Gydnia, Poland, 2014, pp. 1–4. doi: https://doi.org/10.1109/MIKON.2014.6899833.

  112. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An Introduction. Cambridge: MIT Press. https://doi.org/10.1179/175622708X282910

    Book  Google Scholar 

  113. Watkins C. J. C. H., (1989). Learning from delayed rewards, Ph.D Thesis, King’s College, Cambridge University, UK

  114. Wang Z., Yang J., Hu J., Feng W., and Ou Y., (2015). Reinforcement learning approach to learning human experience in tuning cavity filters. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO 2015), Zhuhai, China. pp. 2145–2150. doi: https://doi.org/10.1109/ROBIO.2015.7419091.

  115. Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  116. V. Mnih et al., (2013). Playing atari with deep reinforcement learning. NIPS Deep Learning Workshop. pp. 1–9

  117. Sekhri E., Tamre M., and Kapoor R., (2019). Optimal Q-learning approach for tuning the cavity filters. In 2019 20th International Conference on Research and Education in Mechatronics (REM 2019), Wels, Austria, Wels, Austria: IEEE, 2019, pp. 1–4. doi: https://doi.org/10.1109/REM.2019.8744118.

  118. Wang Z., Ou Y., Wu X., and Feng W., (2018) Continuous reinforcement learning with knowledge-inspired reward shaping for autonomous cavity filter tuning. In 2018 IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, pp. 53–58.

  119. Sekhri E., Kapoor R., and Tamre M., (2020) Double deep Q-learning approach for tuning microwave cavity filters using locally linear embedding technique. In 2020 15th International Conference on Mechatronic Systems and Materials, (MSM 2020), Bialystok, Poland, Bialystok, Poland: IEEE, 2020, pp. 1–6. doi: https://doi.org/10.1109/MSM49833.2020.9202393.

  120. Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  121. Lindstah S., and Lan X, (2020) Reinforcement learning with imitation for cavity filter tuning. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM-2020), Boston, USA, 2020, pp. 1335–1340. doi: https://doi.org/10.1109/AIM43001.2020.9158839.

  122. Wang, Z., & Ou, Y. (2022). Learning human strategies for tuning cavity filters with continuous reinforcement learning. Applied Sciences (MDPI). https://doi.org/10.3390/app12052409

    Article  Google Scholar 

  123. Kacmajor T., and Michalski J. J., (2011) “Neuro-fuzzy approach in microwave filter tuning. In IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, USA, 2011, pp. 1–4. doi: https://doi.org/10.1109/MWSYM.2011.5972771.

  124. Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  125. Zhou J, and Huang J., (2013) Intelligent Tuning for Microwave Filters Based on Multi-Kernal Machine Learning Model. In 2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 2013, pp. 259–266

  126. Hong, J., & Lancaster, M. J. (2001). Microstrip filters for rf/microwave applications. John Wiley & Sons Inc.

    Book  Google Scholar 

  127. Zhou, J., Duan, B., & Huang, J. (2013). Support-vector modeling of electromechanical coupling for microwave filter tuning. International Journal of RF and Microwave Computer-Aided Engineering, 23(1), 127–139. https://doi.org/10.1002/mmce.20683

    Article  Google Scholar 

  128. Zhou, J., Huang, J., Li, P., & Li, N. (2015). Hybrid modeling of microwave devices using multi-kernel support vector regression with prior knowledge. International Journal of RF and Microwave Computer-Aided Engineering, 25(3), 219–228. https://doi.org/10.1002/mmce.20852

    Article  Google Scholar 

  129. Cao, W. H., Liu, C., Yuan, Y., Wu, M., & Wu, S. B. (2018). Parametric modeling of microwave filter using combined MLS-SVR and pole-residue-based transfer functions. International Journal of RF and Microwave Computer-Aided Engineering, 28(5), 1–10. https://doi.org/10.1002/mmce.21246

    Article  Google Scholar 

  130. Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-output least-squares support vector regression machines. Pattern Recognit Lett, 34(9), 1078–1084. https://doi.org/10.1016/j.patrec.2013.01.015

    Article  Google Scholar 

  131. Michalski, J. J. (2012). On linear mapping of filter characteristic to position of tuning elements in filter tuning algorithm. Progress In Electromagnetics Research, 123, 279–298.

    Article  Google Scholar 

  132. Wolberg, J. (2006). Data analysis using the method of least squares. Springer.

    Google Scholar 

  133. Kacmajor, T., & Michalski, J. J. (2013). Filter tuning based on linear decomposition of scattering characteristics. Progress in Electromagnetics Research, 135, 451–464. https://doi.org/10.2528/PIER12112603

    Article  Google Scholar 

  134. Zhang, Y.-L., Su, T., Li, Z.-P., & Liang, C.-H. (2013). A fast tuning method for microwave filter using VF-ASM technology. Progress In Electromagnetics Research M, 30, 25–37. https://doi.org/10.2528/PIERM13012201

    Article  Google Scholar 

  135. Zhang, Y.-L., Su, T., Li, Z.-P., & Liang, C.-H. (2013). A hybrid computer-aided tuning method for microwave filters. Progress In Electromagnetics Research, 139, 559–575.

    Article  Google Scholar 

  136. Wu, S., Liu C, Cao W, and Wu M, “A new method for hybrid diagnosis and tuning of coaxial cavity filter. In 2017 36th Chinese Control Conference (CCC 2017), Dalian, China, 2017, pp. 9692–9696. doi: https://doi.org/10.23919/ChiCC.2017.8028902

  137. Wang, R., Li, L.-Z., Peng, L., Tu, X.-Q., & Zhong, X.-X. (2016). Diagnosis of coupled resonator bandpass filters using VF and optimization method. Progress In Electromagnetics Research M, 51, 195–203. https://doi.org/10.2528/PIERM16083001

    Article  Google Scholar 

  138. Wu, S., Cao, W., Wu, M., & Liu, C. (2018). A tuning method for microwave filter via complex neural network and improved space mapping. World Academy of Science, Engineering and Technology: International Journal of Electronics and Communication Engineering, 12(3), 222–228.

    Google Scholar 

  139. Wu, S., Cao, W., Liu, C., & Wu, M. (2018). A computer-aided tuning method for microwave filters by combing T-S fuzzy neural networks and improved space mapping. Computer Modeling in Engineering and Sciences, 116(3), 433–453. https://doi.org/10.31614/cmes.2018.03309

    Article  Google Scholar 

  140. Yang, Z., Peng, M., Cao, Y., & Zhang, L. (2014). A new multi-objective reliability-based robust design optimization method. Computer Modeling in Engineering and Sciences, 98(4), 409–442. https://doi.org/10.3970/cmes.2014.098.409

    Article  MathSciNet  Google Scholar 

  141. Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations 3rd edition. The Johns Hopkins University Press.

    Google Scholar 

  142. Traina, D., Macchiarella, G., & Sarkar, T. K. (2007). Robust formulations of the cauchy method suitable for microwave duplexers modeling. IEEE Transactions on Microwave Theory and Techniques, 55(5), 974–982. https://doi.org/10.1109/TMTT.2007.895394

    Article  Google Scholar 

  143. Traina, D., & Macchiarella, G. (2007). New general formulation of the cauchy method for the accurate model extraction of higher order microwave systems. Microwave and Optical Technology Letters, 49(8), 1957–1961. https://doi.org/10.1002/mop

    Article  Google Scholar 

  144. Wilkinson, J. H. (1961). Error analysis of direct methods of matrix inversion. Journal of ACM (JACM), 8(3), 281–330. https://doi.org/10.1145/321075.321076

    Article  MathSciNet  Google Scholar 

  145. Bauer, F. L., (1963). Optimally scaled matrices. In Numerische Mathematik. 5, pp. 73–87.

  146. Wu, S., & Cao, W. (2019). Parametric model for microwave filter by using multiple hidden layer output matrix extreme learning machine. IET Microwaves, Antennas and Propagation, 13(11), 1889–1896. https://doi.org/10.1049/iet-map.2018.5823

    Article  Google Scholar 

  147. Wu, S. B., & Cao, W. H. (2019). Tuning model for microwave filter by using improved back-propagation neural network based on Gauss Kernel clustering. International Journal of RF and Microwave Computer-Aided Engineering, 29(8), 1–10. https://doi.org/10.1002/mmce.21787

    Article  Google Scholar 

  148. Halat S, and Mehdi M (2021), “Modified double DQN: addressing stability,. doi: https://doi.org/10.48550/arXiv.2108.04115.

  149. E. Sekhri, M. Tamre, R. Kapoor, and D. C. Liyanage, “Novel Band-Subtraction Technique to Differentiate Screws for Microwave Cavity Filter Tuning,” in International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2023), Tenerife, Canary Islands, Spain, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 1–6. doi: https://doi.org/10.1109/ICECCME57830.2023.10253048.

Download references

Funding

Research was supported by Tallinn University of Technology, Tallinn, Estonia.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization of this paper was a collaborative effort among all three authors. The first author conceived the idea of paper; developed, tested, and validated the novel tuning algorithm; and compiled the manuscript. The second author provided the vision for the novel expert-based hybrid learning algorithm and also contributed to testing, and multiple reviews. The third author was part of the overall execution of the objective.

Corresponding author

Correspondence to Rajiv Kapoor.

Ethics declarations

Conflict of Interest

There is no conflict of interests among all authors of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The institute name was corrected for authors Even Sekhri and Mart Tamre, and the funding and author contribution sections were corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhri, E., Kapoor, R. & Tamre, M. Review of State-of-the-Art Microwave Filter Tuning Techniques and Implementation of a Novel Tuning Algorithm Using Expert-Based Hybrid Learning. Wireless Pers Commun 134, 625–681 (2024). https://doi.org/10.1007/s11277-024-10894-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10894-x

Keywords

Navigation