Skip to main content
Log in

Multiple Generalized Sidelobe Cancellers for Minimization of Interference in Cognitive Radio System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The challenge associated with cognitive radio systems based on orthogonal frequency division multiplexing (OFDM) lies in sidelobes caused by the OFDM subcarriers. As a result, reducing these sidelobes originating from the transmitter becomes crucial. Several methods are suggested in the literature to suppress these sidelobes, but the prerequisites for better superior techniques are still demanding. The earlier methods comprise the use of cancellation carriers to overcome these sidelobes. However, the cancellation carrier scheme leads to incompetent spectrum utilization because of the insertion of extra subcarriers to minimize interference. This paper proposes the employment of multiple generalized sidelobe cancellers (GSCs) in serial concatenation. The outputs of one GSC are fed into the following GSCs to produce enhanced sidelobe suppression. The effectiveness of the suggested approach is evaluated through simulations in comparison with various established techniques. Simulation results demonstrate improved sidelobe reduction performance for the proposed scheme compared with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

The data used to support the findings of this study are included in the article.

References

  1. Strużak, R., Tjelta, T., & Borrego, P. (2016). On radio-frequency spectrum management. Journal of Telecommunications and Information Technology, 3, 108–130.

    Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380

    Article  Google Scholar 

  3. Meucci, F., Cabral, O., Velez J. F., Mihovska, A., & Prasad, R. N. (2009). Spectrum aggregation with multi-band user allocation over two frequency bands. In Proceedings of IEEE conference on Mobile WiMAX , 9–10 July, 2009, Napa Valley, USA (pp. 81–86).

  4. Akyildiz, I. F., Lee, W., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.

    Article  Google Scholar 

  5. Gul, N., Ahmed, S., Kim, S. M., & Kim, J. (2023). Robust spectrum sensing against malicious users using particle swarm optimization. ICT Express, 9(1), 106–111. https://doi.org/10.1016/j.icte.2021.12.008

    Article  Google Scholar 

  6. Gul, N., Khan, M. S., Kim, J., & Kim, S. M. (2020). Robust spectrum sensing via double-sided neighbor distance based on genetic algorithm in cognitive radio networks. Mobile Information Systems, 2020, 1–26. https://doi.org/10.1155/2020/8876824

    Article  Google Scholar 

  7. Ahmed, R., Elahi, A., Ahmed, G., Ahmed, A., & Gull, N. (2020). Sidelobe minimization in orthogonal frequency division multiplexing using efficient generalize sidelobe canceler (pp. 674–678). https://doi.org/10.1109/IBCAST47879.2020.9044540

  8. Khan, M. S., Gul, N., Kim, J., Qureshi, I. M., & Kim, S. M. (2020). A genetic algorithm-based soft decision fusion scheme in cognitive IoT networks with malicious users. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/2509081

    Article  Google Scholar 

  9. Gul, N., Kim, S. M., Ahmed, S., Khan, M. S., & Kim, J. (2021). Differential evolution based machine learning scheme for secure cooperative spectrum sensing system. Electronics, 10(14), 1–29. https://doi.org/10.3390/electronics10141687

    Article  Google Scholar 

  10. Gul, N., Ahmed, S., Elahi, A., Kim, S. M., & Kim, J. (2022). Optimal cooperative spectrum sensing based on butterfly optimization algorithm. Computers, Materials and Continua, 71(1), 369–387. https://doi.org/10.32604/cmc.2022.022260

    Article  Google Scholar 

  11. Gul, N., Khan, M. S., Kim, S. M., Kim, J., Elahi, A., & Khalil, Z. (2020). Boosted trees algorithm as reliable spectrum sensing scheme in the presence of malicious users. Electronics, 9(6), 1–23. https://doi.org/10.3390/electronics9061038

    Article  Google Scholar 

  12. Mohammed, A., Ismail, T., Nassar, A., & Mostafa, H. (2021). A novel companding technique to reduce high peak to average power ratio in OFDM systems. IEEE Access, 9, 35217–35228. https://doi.org/10.1109/ACCESS.2021.3062820

    Article  Google Scholar 

  13. Bingham, J. A. C. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine. https://doi.org/10.1109/35.54342

    Article  Google Scholar 

  14. Liu, K., Cui, X., Xing, Z., & Liu, Y. (2022). Generalized continuous piecewise linear companding transform design for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 68(2), 1–17. https://doi.org/10.1109/tbc.2022.3171134

    Article  Google Scholar 

  15. Yamada, H., Suganuma, H., & Maehara, F. (2022). System capacity analysis of asynchronous FBMC and OFDM systems in the presence of adjacent channel interference and multipath fading. In IEEE Radio and Wireless Symposium, RWS, 2022 (pp. 171–173). https://doi.org/10.1109/RWS53089.2022.9719951

  16. Mahmoud, H., Yücek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–14. https://doi.org/10.1109/MWC.2009.4907554

    Article  Google Scholar 

  17. van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Artech House Inc.

  18. Hussain, K., & López-Valcarce, R. (2021). Memory tricks: Improving active interference cancellation for out-of-band power reduction in OFDM. In IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2021 (pp. 86–90). https://doi.org/10.1109/SPAWC51858.2021.9593166

  19. Namitha, A. S., & Namitha, A. S. (2022). Simultaneous minimization of side-band power and PAPR in OFDM based cognitive radio without additional bandwidth requirement for sending SI. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.4513

    Article  Google Scholar 

  20. Hussain, K., & Lopez-Valcarce, R. (2022). Joint precoder and window design for OFDM sidelobe suppression. IEEE Communications Letters, 26(12), 3044–3048. https://doi.org/10.1109/LCOMM.2022.3203521

    Article  Google Scholar 

  21. Diming, Q., Wang, Z., & Jiang, T. (2010). Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM systems with cyclic prefix. IEEE Transactions on Vehicular Technology, 59(4), 1689–1695. https://doi.org/10.1109/TVT.2010.2040848

    Article  Google Scholar 

  22. Lopes, B. R. F, & Panaro, G. S. J. (2013). OFDM sidelobe suppression combining active and null cancellation carriers in the guard bands. In Proceedings of IEEE International Microwave Optoelectronics Conference, 4–7 Aug, 2013, Rio de Janeiro, Brazil (pp. 1–5). https://doi.org/10.1109/IMOC.2013.6646597

  23. Elahi, A., Qureshi, I. M., Zaman, F., & Munir, F. (2016). Reduction of out of band radiation in non-contiguous OFDM based cognitive radio system using heuristic techniques. Journal of Information Sciences and Engineering, 32(2), 349–364.

    Google Scholar 

  24. Elahi, A., Ahmed, A., Gul, N., Ahmed, R., & Kamran, M. (2020). A mongrel technique for the reducation of sidelobes in OFDM—based cognitive radio system. In Proceedings of 2020 17th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2020 (pp. 686–689). https://doi.org/10.1109/IBCAST47879.2020.9044527

  25. Elahi, A., Gul, N., & Khan, S. U. (2021). EigenSpace-based generalized sidelobe canceler applied for sidelobe suppression in cognitive radio systems. Wireless Personal Communications, 121, 30093028. https://doi.org/10.1007/s11277-021-08861-x

    Article  Google Scholar 

  26. Elahi, A., Qureshi, I. M., Khan, Z., & Zaman, F. (2015). Sidelobe reduction in non-contiguous OFDM-based cognitive radio systems using a generalized sidelobe canceller. Applied Sciences, 5(4), 894–909. https://doi.org/10.3390/app5040894

    Article  Google Scholar 

  27. Ahmed, R., Gul, N., Ahmed, S., Khan, M. S., Kim, S. U., & Kim, J. (2022). Sidelobe reduction in NC-OFDM-based CRNs using differential evolution-assisted generalized sidelobe canceller. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/9449400

    Article  Google Scholar 

  28. Elahi, A., Ali, S., Ali, L., & Khan, S. U. (2021). Efficient high out of band reduction for cognitive radio systems. International Journal of Computational Intelligence in Control, 13(2), 1–9.

    Google Scholar 

  29. Roberto, L., & Member, S. (2022). General form of the power spectral density of multicarrier signals. IEEE Communication Letters, 26(8), 1–5. https://doi.org/10.1109/LCOMM.2022.3181728

    Article  Google Scholar 

  30. Elahi, A., Gul, N., & Khan, S. U. (2021). EigenSpace-based generalized sidelobe canceler applied for sidelobe suppression in cognitive radio systems. Wireless Personal Communications, 121(4), 3009–3028. https://doi.org/10.1007/s11277-021-08861-x

    Article  Google Scholar 

  31. Kageyama, T., Muta, O., & Gacanin, H. (2020). Performance analysis of OFDM with peak cancellation under EVM and ACLR restrictions. IEEE Transactions on Vehicular Technology, 69(6), 6230–6241. https://doi.org/10.1109/TVT.2020.2982587

    Article  Google Scholar 

  32. Ahmed, R., Gul, N., Ahmed, S., Khan, M. S., Kim, S. M., & Kim, J. (2022). Sidelobe reduction in NC-OFDM-based CRNs using differential evolution-assisted generalized sidelobe canceller. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/9449400

    Article  Google Scholar 

  33. Elahi, A., Qureshi, I. M., Zaman, F., & Munir, F. (2016). Reduction of out of band radiation in non-contiguous OFDM based cognitive radio system using heuristic techniques. Journal of Information Science and Engineering, 32(2), 349–364.

    Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the Ministry of Science and ICT (MSIT) and the National Research Foundation (NRF) of South Korea for their invaluable support and funding that made this research possible.

Funding

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1A2C1013150 and 2022R1F1A1074556).

Author information

Authors and Affiliations

Authors

Contributions

AK, NG, and AE contributed to the conceptualization and data curation of the study and methodology. SMK, SUH, and JK formally analyzed project administration and provided resources. Similarly, AK, NG, JK, SMK, SUH, and AE contributed to the manuscript’s original draft and review process.

Corresponding author

Correspondence to Junsu Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleem, A., Gul, N., Elahi, A. et al. Multiple Generalized Sidelobe Cancellers for Minimization of Interference in Cognitive Radio System. Wireless Pers Commun 133, 641–666 (2023). https://doi.org/10.1007/s11277-023-10784-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10784-8

Keywords

Navigation