Skip to main content
Log in

A New Generalized Approach for the Realization of Meminductor Emulator and Its Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Meminductors are memory-based elements, which are gaining a lot of popularity as a result of their applications in widespread areas. However, due to the non-availability of their off-the-shelf ICs, designers are trying to find alternatives of meminductor emulators. This paper presents a generalized approach to designing a meminductor emulator from an active inductor circuit. An active inductor circuit having a current conveyor (CC), operational transconductance amplifier (OTA), and a grounded capacitor has been utilized. The idea is encouraged by the thought of putting memory in conventional active inductor circuits. In the proposed configuration, one additional block namely a current differencing buffered amplifier (CDBA) and an extra grounded capacitor have been used to modify the active inductor circuit into a meminductor emulator circuit. The goal is to implement a meminductor emulator employing active blocks which can be designed using commercially available ICs. Simulation results of the proposed emulator are obtained using the LTspice tool along with 0.18 µm CMOS technology parameters. The essential testimonials, pinched hysteresis loops, and non-volatility tests, confirm that the suggested circuit works as a meminductor emulator. Furthermore, the pinched hysteresis loops are observed for a large range of frequencies, verifying the wide dynamic frequency range of the suggested circuit. To assess how well the suggested meminductor emulator performs, a chaotic oscillator has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Code availability

The code is available with corresponding author. It can be provided on reasonable request.

References

  1. Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature Publishing Group, 453(7191), 80–83. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  3. Itoh, M., & Chua, L. (2019). Memristor cellular automata and memristor discrete-time cellular neural networks. Springer, Handbook of Memristor Networks. https://doi.org/10.1007/978-3-319-76375-0_47

    Article  MATH  Google Scholar 

  4. Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N., & Lu, W. (2012). A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano letters, 12(1), 389–395. https://doi.org/10.1021/nl203687n

    Article  Google Scholar 

  5. Hu, X., Duan, S., Wang, L., & Liao, X. (2012). Memristive crossbar array with applications in image processing. Science China Information Sciences, 55(2), 461–472. https://doi.org/10.1007/s11432-011-4410-9

    Article  Google Scholar 

  6. Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., & Williams, R. S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3(7), 429–433. https://doi.org/10.1038/nnano.2008.160

    Article  Google Scholar 

  7. Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., & Williams, R. S. (2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 106(7), 074508. https://doi.org/10.1063/1.3236506

    Article  Google Scholar 

  8. Wang, X., Chen, Y., Gu, Y., & Li, H. (2009). Spintronic memristor temperature sensor. IEEE Electron Device Letters, 31(1), 20–22. https://doi.org/10.1109/LED.2009.2035643

    Article  Google Scholar 

  9. Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. International Journal of Circuit Theory and Applications, 48(7), 1154–1179. https://doi.org/10.1002/cta.2774

    Article  Google Scholar 

  10. Gupta, S., & Rai, S. K. (2020). New grounded and floating decremental/incremental memristor emulators based on CDTA and its application. Wireless Personal Communications, 113(2), 773–798. https://doi.org/10.1007/s11277-020-07252-y

    Article  Google Scholar 

  11. Yadav, N., Rai, S. K., & Pandey, R. (2021). Novel memristor emulators using fully balanced VDBA and grouned capacitor. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 229–245. https://doi.org/10.1007/s40998-020-00357-x

    Article  Google Scholar 

  12. Srivastava, P., Gupta, R. K., Sharma, R. K., & Ranjan, R. K. (2020). MOS-only Memristor emulator. Circuits, Systems, and Signal Processing, 39(11), 5848–5861. https://doi.org/10.1007/s00034-020-01421-x

    Article  Google Scholar 

  13. Sharma, V. K., Parveen, T., & Ansari, M. S. (2021). Four quadrant analog multiplier based memristor emulator using single active element. AEU-International Journal of Electronics and Communications, 130, 152575. https://doi.org/10.1016/j.aeue.2020.153575

    Article  Google Scholar 

  14. Ranjan, R. K., Sharma, P. K., Sagar, R. N., Kumari, B., & Khateb, F. (2019). Memristor emulator circuit using multiple-output OTA and Its experimental results. Journal of Circuits, Systems and Computers, 28(10), 1950166. https://doi.org/10.1142/S0218126619501664

    Article  Google Scholar 

  15. Pershin, Y. V., & Ventra, M. D. (2010). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46(7), 517–518. https://doi.org/10.1049/el.2010.2830

    Article  Google Scholar 

  16. Biolek, D., Biolkova, V., & Kolka, Z. (2020). Mutators simulating memcapacitors and meminductors. IEEE Asia Pacific Conference on Circuits and Systems. https://doi.org/10.1109/APCCAS.2010.5774993

    Article  Google Scholar 

  17. Pershin, Y. V., & Di, V. M. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47(4), 243–244. https://doi.org/10.1049/el.2010.7328

    Article  Google Scholar 

  18. D-Sheng, Y, Yan, L., HHC, Iu, & Yi-Hua, H,. (2014). Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chinese Physics B, 23(7), 1–11. https://doi.org/10.1088/1674-1056/23/7/070702

    Article  Google Scholar 

  19. Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 299–303. https://doi.org/10.1109/TCSII.2014.2312807

    Article  Google Scholar 

  20. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. Journal of Semiconductor Technology and Science, 14(6), 750–754. https://doi.org/10.5573/JSTS.2014.14.6.750

    Article  Google Scholar 

  21. Fouda M.E., & Radwan, AG (2014). Memristor-less current and voltage-controlled meminductor emulators. In: 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp 279-282. https://doi.org/10.1109/ICECS.2014.7049976

  22. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). A mutator-based meminductor emulator circuit. IEEE International Symposium on Circuits and Systems (ISCAS). https://doi.org/10.1109/ISCAS.2014.6865618

    Article  Google Scholar 

  23. Sah, M. P., Budhathoki, Y., & RK, & Kim, C. H. (2014). Mutator-based meminductor emulator for circuit applications. Circuits, Systems, and Signal Processing, 33(8), 2363–2383. https://doi.org/10.1007/s00034-014-9758-9

    Article  Google Scholar 

  24. Yu, D., Liang, Y., Iu, H. H. C., & Chua, L. (2014). A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(10), 758–762. https://doi.org/10.1109/TCSII.2014.2345305

    Article  Google Scholar 

  25. Wang, S. F. (2016). The gyrator for transforming nano memristor into meminductor. Circuit World, 42(4), 197–200. https://doi.org/10.1108/CW-01-2016-0002

    Article  MathSciNet  Google Scholar 

  26. Yu, D., Zhao, X., Sun, T., Iu, T., & HHC, Fernando,. (2019). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1334–1338. https://doi.org/10.1109/TCSII.2019.2936453

    Article  Google Scholar 

  27. Zhao, Q., Wang, C., & Zhang, X. (2019). A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(1), 1–14. https://doi.org/10.1063/1.5081076

    Article  MathSciNet  MATH  Google Scholar 

  28. Taskiran, Z. G. C., Sagbas, M., Ayten, U. E., & Sedef, H. (2020). A new universal mutator circuit for memcapacitor and meminductor elements. AEU-International Journal of Electronics and Communications, 119, 1–11. https://doi.org/10.1016/j.aeue.2020.153180

    Article  Google Scholar 

  29. Francisco, R. J., & Alfredo, M.-G. (2021). Design and implementation of a floating meminductor emulator upon Riordan gyrator. AEU: International Journal of Electronics and Communications, 133, 1–7. https://doi.org/10.1016/j.aeue.2021.153671

    Article  Google Scholar 

  30. Bhardwaj, K., & Srivastava, M. (2021). New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectronics Journal, 114(105126), 1–15. https://doi.org/10.1016/j.mejo.2021.105126

    Article  Google Scholar 

  31. Kumar, K., & Nagar, B. C. (2021). New tunable resistorless grounded meminductor emulator. Journal of Computational Electronics, 20, 1452–1460. https://doi.org/10.1007/s10825-021-01697-5

    Article  Google Scholar 

  32. Raj, A., Kumar, K., & Kumar, P. (2021). CMOS realization of OTA based tunable grounded meminductor. Analog Integrated Circuits and Signal Processing, 107, 475–482. https://doi.org/10.1007/s10470-021-01808-z

    Article  Google Scholar 

  33. Demir, E., Yesil, A., Babacan, Y., & Karacali, T. (2021). Operational transconductance amplifier-based electronically controllable memcapacitor and meminductor emulators. Journal of Circuits Systems and Computers (World Scientific), 30(12), 2150222. https://doi.org/10.1142/S0218126621502224

    Article  Google Scholar 

  34. Raj, N., Ranjan, R. K., Khateb, F., & Kumngern, M. (2021). Mem-elements emulator design with experimental validation and its application. IEEE Access, 9, 69860–69875. https://doi.org/10.1109/ACCESS.2021.3078189

    Article  Google Scholar 

  35. Singh, A., & Rai, S. K. (2021). Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. Journal of Circuits, Systems, and Computers, 30(12), 2150219. https://doi.org/10.1142/S0218126621502194

    Article  Google Scholar 

  36. Singh, A., & Rai, S. K. (2021). VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 1151–1163. https://doi.org/10.1007/s40998-021-00440-x

    Article  Google Scholar 

  37. Yadav, N., Rai, S. K., & Pandey, R. (2021). New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. Journal of Circuits Systems and Computers, 30(15), 2150283. https://doi.org/10.1142/S0218126621502832

    Article  Google Scholar 

  38. Yadav, N., Rai, S. K., & Pandey, R. (2022). New high frequency memristorless and resistorless meminductor emulators using OTA and CDBA. Sadhana, 47(8), 1–18. https://doi.org/10.1007/s12046-021-01785-z

    Article  Google Scholar 

  39. Singh, A., & Rai, S. K. (2022). New meminductor emulators using single operational amplifier and their application. Circuits, Systems, and Signal Processing, 41(4), 2322–2337. https://doi.org/10.1007/s00034-021-01886-4

    Article  Google Scholar 

  40. Singh, A., & Rai, S. K. (2022). OTA and CDTA-based new memristor-less meminductor emulators and their applications. Journal of Computational Electronics, 21(4), 1026–1037. https://doi.org/10.1007/s10825-022-01889-7

    Article  Google Scholar 

  41. Yadav, N., Rai, S. K., & Pandey, R. (2023). An electronically tunable meminductor emulator and its application in chaotic oscillator and adaptive learning circuit. Journal of Circuits, Systems, and Computers, 32(2), 2350031. https://doi.org/10.1142/S0218126623500317

    Article  Google Scholar 

  42. Yadav, N., Rai, S. K., & Pandey, R. (2023). Simple grounded and floating meminductor emulators based on VDGA and CDBA with application in adaptive learning circuit. Journal of Computational Electronics, 22(1), 531–548. https://doi.org/10.1007/s10825-022-01950-5

    Article  Google Scholar 

  43. Aggarwal, B., Rai, S. K., & Sinha, N. (2023). New memristor-less, resistor-less, two-OTA based grounded and floating meminductor emulators and their applications in chaotic oscillators. Integration, 88, 173–184. https://doi.org/10.1016/j.vlsi.2022.10.005

    Article  Google Scholar 

  44. Aggarwal, B., Rai, S. K., Arora, A., Siddique, A., & Das, R. (2023). A floating decremental /incremental meminductor emulator using voltage differencing inverted buffered amplifier and current follower. Journal of Circuits, Systems, and Computers,. https://doi.org/10.1142/S0218126623502432

    Article  Google Scholar 

  45. Jain, H., Aggarwal, B., & Rai, S. K. (2023). New modified voltage differencing voltage transconductance amplifier (MVDVTA) based meminductor emulator and its applications. Indian Journal of Pure & Applied Physics, 61(4), 239–246. https://doi.org/10.56042/ijpap.v61i4.71313

    Article  Google Scholar 

  46. Korkmaz, M. O., Babacan, Y., & Yesil, A. (2023). A new CCII based meminductor emulator circuit and its experimental results. AEU-International Journal of Electronics and Communications, 158, 154450. https://doi.org/10.1016/j.aeue.2022.154450

    Article  Google Scholar 

  47. Bhardwaj, K., & Srivastava, M. (2023). VDTA and DO-CCII based incremental/decremental floating memductance/meminductance simulator: A novel realization. Integration, 88, 139–155. https://doi.org/10.1016/j.vlsi.2022.09.014

    Article  Google Scholar 

  48. Ventra, M. D., & Pershin, Y. V. (2009). Putting memory into circuit elements: Memristors, memcapacitors and meminductors. Proceedings of the IEEE, 97(8), 1371–1372. https://doi.org/10.1109/JPROC.2009.2022882

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireesh Kumar Rai.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, A., Rai, S.K. & Aggarwal, B. A New Generalized Approach for the Realization of Meminductor Emulator and Its Application. Wireless Pers Commun 131, 2501–2523 (2023). https://doi.org/10.1007/s11277-023-10549-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10549-3

Keywords

Navigation