Skip to main content
Log in

Frequency Selective Surface-Based Electromagnetic Absorbers: Trends and Perspectives

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a review of frequency selective surface (FSS)-based electromagnetic absorbers with an insight into their operational principles. Various techniques commonly used to design and develop FSS-based absorbers for several vital metrics are discussed to assess their efficacies and highlight the benefits and limitations of each solution. The absorbers are discussed in light of their major attributes, starting from their evolution to the state-of-the-art. It includes the most popular configurations of FSS-based absorbers-single/multilayer, radar absorbing material, metamaterial, to more recently used active and conformal absorbers. These absorbers can provide absorption bandwidth in both narrowband and wideband frequencies, which find numerous applications throughout the frequency spectrum, ranging from the VHF range to visible light. Some important aspects of the absorber’s performance have been highlighted. It includes minimum possible thickness for maximum achievable bandwidth, polarization stability, oblique angle insensitivity, and mitigation of cross-polarized reflection required to design an efficient absorber. Moreover, some of the most popular manufacturing and measurement techniques of FSS-based absorbers are discussed before concluding with some future aspects. In the conclusion, the need for economical electromagnetic absorbers to achieve good absorption performances over a wide range of frequencies is justified. The approaches presented in this article offer a broader view of capabilities and forthcoming developments in this crucial area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data and material availability

All data generated or analyzed during this study are included in this published article.

Code availability

Code sharing not applicable to this article.

References

  1. Costa, F., & Monorchio, A. (2012). A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 60(6), 2740–2747. https://doi.org/10.1109/TAP.2012.2194640

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, Y., Jia, Y., Zhang, W., & Li, F. (2020). Wideband RCS reduction of a slot array antenna using a hybrid metasurface. IEEE Transactions on Antennas and Propagation, 68(5), 3644–3652. https://doi.org/10.1109/TAP.2019.2963575

    Article  Google Scholar 

  3. Habib, S., Kiani, G. I., & Butt, M. F. U. (2019). A convoluted frequency selective surface for wideband communication applications. IEEE Access, 7, 65075–65082. https://doi.org/10.1109/ACCESS.2019.2916882

    Article  Google Scholar 

  4. Panwar, R., Puthucheri, S. D., & Agarwala, V. (2015). Design of ferrite-graphene-based thin broadband radar wave absorber for stealth application. IEEE Transactions on Magnetics, 51(11), 2802804. https://doi.org/10.1109/TMAG.2015.2454431

    Article  Google Scholar 

  5. Fang, J., Li, H., Cao, Q., & Wang, Y. (2018). Study of an optically controlled active frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 17(9), 1707–1711. https://doi.org/10.1109/LAWP.2018.2864242

    Article  Google Scholar 

  6. Lazaro, A., Ramos, A., Girbau, D., & Villarino, R. (2013). A novel UWB RFID tag using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 61(3), 1155–1165. https://doi.org/10.1109/TAP.2012.2228838

    Article  Google Scholar 

  7. Sharma, S. K., Zhou, D., Luttgen, A., & Sarris, C. D. (2019). A micro copper mesh-based optically transparent triple-band frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 18(1), 202–206. https://doi.org/10.1109/LAWP.2018.2886305

    Article  Google Scholar 

  8. Wang, X. (2020). Uncooled CMOS integrated triple-band terahertz thermal detector comprising of metamaterial absorber and PTAT sensor. IEEE Access, 8, 114501–114508. https://doi.org/10.1109/ACCESS.2020.3004344

    Article  Google Scholar 

  9. Tarasov, M. A., Gunbina, A. A., Mahashabde, S., Yusupov, R. A., Chekushkin, A. M., Nagirnaya, D. V., Edelman, V. S., Yakopov, G. V., & Vdovin, V. F. (2020). Arrays of annular antennas with SINIS bolometers. IEEE Transactions on Applied Superconductivity, 30(3), 2300106. https://doi.org/10.1109/TASC.2019.2941857

    Article  Google Scholar 

  10. Bai, B., Li, X., Xu, J., & Liu, Y. (2015). Reflections of electromagnetic waves obliquely incident on a multilayer stealth structure with plasma and radar absorbing material. IEEE Transactions on Plasma Science, 43(8), 2588–2597. https://doi.org/10.1109/TPS.2015.2447536

    Article  Google Scholar 

  11. Panwar, R., Puthucheri, S., Agarwala, V., & Singh, D. (2015). An efficient use of waste material for development of cost-effective broadband radar wave absorber. Journal of Electromagnetics Waves and Applications, 29(9), 1238–1255. https://doi.org/10.1080/09205071.2015.1044125

    Article  Google Scholar 

  12. Munk, B. A. (2000). Frequency selective surfaces: Theory and design. John Wiley & Sons Inc.

    Book  Google Scholar 

  13. Mishra, V., Puthucheri, S., & Singh, D. (2017). Development of analytical approach to fabricate composites for microwave absorption. IEEE Transactions on Magnetics, 53(8), 2800710. https://doi.org/10.1109/TMAG.2017.2698401

    Article  Google Scholar 

  14. MacDonald, M. E. (2019). An overview of radomes for large ground-based antennas. IEEE Aerospace and Electronic Systems Magazine, 34(10), 36–43. https://doi.org/10.1109/MAES.2019.2916537

    Article  Google Scholar 

  15. Thomas, N. H., Chen, Z., Fan, S., & Minnich, A. J. (2017). Semiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversion. Scientific Reports, 7(1), 5362. https://doi.org/10.1038/s41598-017-05235-x

    Article  Google Scholar 

  16. Trudeau, C., Beaupre, P., Bolduc, M., & Cloutier, S. G. (2020). All inkjet-printed perovskite-based bolometers. npj Flexible Electronics, 4(1), 34. https://doi.org/10.1038/s41528-020-00097-2

    Article  Google Scholar 

  17. Li, C., Islam, M. M., Moore, J., Sleppy, J., Morrison, C., Konstantinov, K., Dou, S. X., Renduchintala, C., & Thomas, J. (2016). Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature Communications, 7(1), 13319. https://doi.org/10.1038/ncomms13319

    Article  Google Scholar 

  18. Barreda, A. I., Saleh, H., Litman, A., Gonzalez, F., Geffrin, J. M., & Moreno, F. (2017). Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration. Nature Communications, 8(1), 13910. https://doi.org/10.1038/ncomms13910

    Article  Google Scholar 

  19. Liu, J., Lin, S., Huang, K., Jia, C., Wang, Q., Li, Z., Song, J., Liu, Z., Wang, H., Lei, M., & Wu, H. (2020). A large-area AgNW-modified textile with high-performance electromagnetic interference shielding. npj Flexible Electronics, 4(1), 10. https://doi.org/10.1038/s41528-020-0074-0

    Article  Google Scholar 

  20. Krishnan, M. A., (2019). AMCA, India’s first stealth fighter, likely to be airborne before 2025. Onmanorama. Retrieved 9 Aug 2022. From https://www.onmanorama.com/news/india/2019/02/19/india-stealth-fighter-project-amca.html

  21. Dallenbach, W., & Kleinsteuber, W. (1938). Reflection and absorption of decimeter-waves by plane dielectric layers. Hochfrequenztechnik und Elektroakustik, 51, 152–156.

    Google Scholar 

  22. Salisbury, W. W. (1952). Absorbent body of electromagnetic waves. US Patent, 2(599), 944.

    Google Scholar 

  23. Xie, D., Liu, X., Guo, H., Yang, X., Liu, C., & Zhu, L. (2017). A wideband absorber with a multiresonant gridded-square FSS for antenna RCS reduction. IEEE Antennas and Wireless Propagation Letters, 16, 629–632. https://doi.org/10.1109/LAWP.2016.2594213

    Article  Google Scholar 

  24. Chakradhary, V. K., Baskey, H. B., Roshan, R., Pathik, A., & Akhtar, M. J. (2018). Design of frequency selective surface-based hybrid nanocomposite absorber for stealth applications. IEEE Transactions on Microwave Theory and Techniques, 66(11), 4737–4744. https://doi.org/10.1109/TMTT.2018.2864298

    Article  Google Scholar 

  25. Panwar, R., Puthucheri, S., Agarwala, V., & Singh, D. (2015). Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogenous composites. IEEE Transactions on Microwave Theory and Techniques, 63(8), 2438–2448. https://doi.org/10.1109/TMTT.2015.2446989

    Article  Google Scholar 

  26. Fante, R. L., & McCormack, M. T. (1988). Reflection properties of the salisbury screen. IEEE Transactions on Antennas and Propagation, 36(10), 1443–1454. https://doi.org/10.1109/8.8632

    Article  Google Scholar 

  27. Yao, Z., Xiao, S., Jiang, Z., Yan, L., & Wang, B. Z. (2020). On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS. IEEE Antennas and Wireless Propagation Letters, 19(4), 591–595. https://doi.org/10.1109/LAWP.2020.2972919

    Article  Google Scholar 

  28. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physics Review Letters, 100(20), 207402. https://doi.org/10.1103/PhysRevLett.100.207402

    Article  Google Scholar 

  29. Song, J., Huang, C., Yang, J., Zhang, X., Peng, J., & Luo, X. (2020). Broadband and tunable radar absorber based on graphene capacitor integrated with resistive frequency-selective surface. IEEE Transactions on Antennas and Propagation, 68(3), 2446–2450. https://doi.org/10.1109/TAP.2019.2943419

    Article  Google Scholar 

  30. Singh, A. K., Abegoankar, M. P., & Koul, S. K. (2019). Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Transactions on Electromagnetic Compatibility, 61(3), 878–886. https://doi.org/10.1109/TEMC.2018.2839881

    Article  Google Scholar 

  31. Du Toit, L. J. (1994). The design of Jauman absorbers. IEEE Antennas and Propagation Magazine, 36(6), 17–25. https://doi.org/10.1109/74.370526

    Article  Google Scholar 

  32. Hatakeyama, K., & Inui, T. (1984). Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers. IEEE Transactions on Magnetics, 20(5), 1261–1263. https://doi.org/10.1109/TMAG.1984.1063424

    Article  Google Scholar 

  33. Parameswaran, A., Ovhal, A. A., Kundu, D., Sonalikar, H. S., Singh, J., & Singh, D. (2022). A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes. IEEE Transactions on Electromagnetic Compatibility, 64(5), 1758–1766. https://doi.org/10.1109/TEMC.2022.3196406

    Article  Google Scholar 

  34. Tirkey, M. M., & Gupta, N. (2022). A novel ultrathin chekerboard inspired ultrawideband metasurface absorber. IEEE Transactions on Electromagnetic Compatibility, 64(1), 66–74. https://doi.org/10.1109/TEMC.2021.3091767

    Article  Google Scholar 

  35. Yao, Z., Xiao, S., Li, Y., & Wang, B. Z. (2022). Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers. IEEE Transactions on Antennas and Propagation, 70(8), 7276–7281. https://doi.org/10.1109/TAP.2022.3149594

    Article  Google Scholar 

  36. Li, Y., Gu, P. F., He, Z., Cao, Z., Cao, J., Leung, K. W., & Ding, D. (2022). An ultra-wideband multilayer absorber using an equivalent circuit based approach. IEEE Transactions on Antennas and Propagation, 70(12), 11911–11921. https://doi.org/10.1109/TAP.2022.3213415

    Article  Google Scholar 

  37. Lleshi, X., Van Hoang, T. Q., Loiseaux, B., & Lippens, D. (2021). Design and full characterization of a 3-D-printed hyperbolic pyramidal wideband microwave absorber. IEEE Antennas and Wireless Propagation Letters, 20(1), 28–32. https://doi.org/10.1109/LAWP.2020.3037718

    Article  Google Scholar 

  38. Shi, T., Jimn, L., Han, L., Tang, M. C., Xu, H. X., & Qiu, C. W. (2021). Dispersion-engineered, broadband, wide-angle, polarization-independent microwave metamaterial absorber. IEEE Transactions on Antennas and Propagation, 68(1), 229–238. https://doi.org/10.1109/TAP.2020.3001673

    Article  Google Scholar 

  39. Rozanov, K. N. (2000). Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 48(8), 1230–1234. https://doi.org/10.1109/8.884491

    Article  Google Scholar 

  40. Vinoy, K. J., & Jha, R. M. (1996). Radar absorbing materials: from theory to design and characterization. Springer.

    Book  Google Scholar 

  41. Najim, M., Puthucheri, S., Agarwala, V., & Singh, D. (2016). ANN-based two-layer absorber design using Fe-Al hybrid nano-composites for broad bandwidth microwave absorption. IEEE Transactions on Magnetics, 52(12), 4003208. https://doi.org/10.1109/TMAG.2016.2598530

    Article  Google Scholar 

  42. Najim, M., Smitha, P., Agarwala, V., & Singh, D. (2015). Design of light weight multi-layered coating of zinc oxide-iron-graphite nano-composites for ultra-wide bandwidth microwave absorption. Journal of Materials Science: Materials in Electronics, 26(10), 7367–7377. https://doi.org/10.1007/s10854-015-3366-8

    Article  Google Scholar 

  43. Smitha, P., Singh, I., Majim, M., Panwar, R., Singh, D., Agarwala, V., & Varma, G. D. (2016). Development of thin broad band radar absorbing materials using nanostructured spinel ferrites. Journal of Materials Science: Materials in Electronics, 27(8), 7731–7737. https://doi.org/10.1007/s10854-016-4760-6

    Article  Google Scholar 

  44. Zhao, H., Cheng, Y., Liu, W., Yang, L., Zhang, B., Wang, L. P., Ji, G., & Xu, Z. J. (2019). Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Letters, 11(1), 24. https://doi.org/10.1007/s40820-019-0255-3

    Article  Google Scholar 

  45. Panwar, R., Puthucheri, S., Singh, D., Agarwala, V., & Lee, J. R. (2017). Microwave absorption properties of FSS-impacted composites as a broadband microwave absorber. Advanced Composite Materials, 26(2), 99–113. https://doi.org/10.1080/09243046.2016.123200

    Article  Google Scholar 

  46. Marra, F., Lecini, J., Tamburrano, A., Pisu, L., & Sarto, M. S. (2018). Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite. Scientific Reports, 8(1), 12029. https://doi.org/10.1038/s41598-018-30498-3

    Article  Google Scholar 

  47. Li, W., Chen, X., Zhang, Z., Wu, Z., Yang, L., & Zou, Y. (2022). Ultralight and low-cost structural absorbers with enhanced microwave absorption performance based on sustainable waste biomass. IEEE Transactions on Antennas and Propagation, 70(1), 401–409. https://doi.org/10.1109/TAP.2021.3098586

    Article  Google Scholar 

  48. Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials: Transmission line theory and microwave applications—The engineering approach. John Wiley & Sons Inc.

    Book  Google Scholar 

  49. Marques, R., Martin, F., & Sorolla, M. (2008). Metamaterials with negative parameter: Theory, design, and microwave applications. Wiley-Interscience.

    Google Scholar 

  50. Costa, F., Monorchio, A., & Manara, G. (2010). Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Transactions on Antennas and Propagation, 58(5), 1551–1558. https://doi.org/10.1109/TAP.2010.2044329

    Article  Google Scholar 

  51. Munaga, P., Ghosh, S., Bhattacharyya, S., & Srivastava, K. V. (2016). A fractal-based compact broadband polarization insensitive metamaterial absorber using lumped resistors. Microwave and Optical Technology Letters, 58(2), 343–347. https://doi.org/10.1002/mop.29571

    Article  Google Scholar 

  52. Ghosh, S., Bhattacharyya, S., & Srivastava, K. V. (2014). Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber. Microwave and Optical Technology Letters, 56(2), 350–355. https://doi.org/10.1002/mop.28122

    Article  Google Scholar 

  53. Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas and Wireless Propagation Letters, 14, 1172–1175. https://doi.org/10.1109/LAWP.2015.2396302

    Article  Google Scholar 

  54. Yoo, M., & Lim, S. (2014). Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Transactions on Antennas and Propagation, 62(5), 2652–2658. https://doi.org/10.1109/TAP.2014.2308511

    Article  Google Scholar 

  55. Qian, G., Zhao, J., Ren, X., Chen, K., Jiang, T., Feng, Y., & Liu, Y. (2019). Switchable broadband dual-polarized frequency-selective rasorber/absorber. IEEE Antennas and Wireless Propagation Letters, 18(12), 2508–2512. https://doi.org/10.1109/LAWP.2019.2941661

    Article  Google Scholar 

  56. Zhu, M., Yuan, H., Li, H., Wang, Y., & Cao, Q. (2022). Switchable polarization insensitivity radar absorber/reflector based on active frequency selective surface. IEEE Transactions on Electromagnetic Compatibility, 64(6), 2005–2014. https://doi.org/10.1109/TEMC.2022.3196157

    Article  Google Scholar 

  57. Wang, J., Feng, D., Xu, Z., Wu, Q., & Hu, W. (2021). Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics. IEEE Transactions on Antennas and Propagation, 69(6), 3322–3331. https://doi.org/10.1109/TAP.2020.3037757

    Article  Google Scholar 

  58. Fan, Y., Li, D., Ma, H., Xing, J., Gu, Y., Ang, L. K., & Li, E. P. (2023). Ultrawideband dual-polarized frequency-selective absorber with tunable reflective notch. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2023.3239161

    Article  Google Scholar 

  59. Yi, J., Wei, M., Lin, M., Zhao, X., Zhu, L., Chen, X., & Jiang, Z. H. (2022). Frequency-tunable and magnitude-tunable microwave metasurface absorbers enabled by shape memory polymers. IEEE Transactions on Antennas and Propagation, 70(8), 6804–6812. https://doi.org/10.1109/TAP.2022.3161560

    Article  Google Scholar 

  60. Zhang, Y., Cao, Z., Huang, Z., Miao, L., Bie, S., & Jiang, J. (2021). Ultrabroadband double-sided and dual-tuned active absorber for UHF band. IEEE Transactions on Antennas and Propagation, 69(2), 1204–1208. https://doi.org/10.1109/TAP.2020.3004979

    Article  Google Scholar 

  61. Payne, K., Xu, K., Choi, J. H., & Lee, J. K. (2021). Multiphysics analysis of plasma-based tunable absorber for high-power microwave applications. IEEE Transactions on Antennas and Propagation, 69(11), 7624–7636. https://doi.org/10.1109/TAP.2021.3070088

    Article  Google Scholar 

  62. Kim, S., Li, A., Lee, J., & Sievenpiper, D. F. (2021). Active self-tuning metasurface with enhanced absorbing frequency range for suppression of high-power surface currents. IEEE Transactions on Antennas and Propagation, 69(5), 2759–2767. https://doi.org/10.1109/TAP.2020.3032834

    Article  Google Scholar 

  63. Ghosh, S., & Srivastava, K. V. (2017). Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range. IEEE Transactions on Antennas and Propagation, 65(9), 4903–4908. https://doi.org/10.1109/TAP.2017.2731381

    Article  Google Scholar 

  64. Balci, O., Polat, E. O., Kakenov, N., & Kocabas, C. (2015). Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Communications, 6(1), 6628. https://doi.org/10.1038/ncomms7628

    Article  Google Scholar 

  65. Hayes, G. J., So, J. H., Qusba, A., Dickey, M. D., & Lazzi, G. (2012). Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 60(5), 2151–2156. https://doi.org/10.1109/TAP.2012.2189698

    Article  Google Scholar 

  66. Ghosh, S., & Lim, S. (2018). Fluidically reconfigurable multifunctional frequency-selective surface with miniaturization characteristic. IEEE Transactions on Microwave Theory and Techniques, 66(8), 3857–3865. https://doi.org/10.1109/TMTT.2018.2829195

    Article  Google Scholar 

  67. Bossard, J. A., Liang, X., Li, L., Yun, S., Werner, D. H., Weiner, B., Mayer, T. S., Cristman, P. F., Dias, A., & Khoo, I. C. (2008). Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals. IEEE Transactions on Antennas and Propagation, 56(5), 1308–1320. https://doi.org/10.1109/TAP.2008.922174

    Article  Google Scholar 

  68. Pitilakis, A., Tsilipakos, O., Liu, F., Kossifos, K. M., Tasolamprou, A. C., Kwon, D. H., Mirmoosa, M. S., Manessis, D., Kantartzis, N. V., Liaskos, C., Antoniades, M. A., Georgiou, J., Soukoulis, C. M., Kafesaki, M., & Tretyakov, S. A. (2021). A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects. IEEE Transactions on Antennas and Propagation, 69(3), 1440–1454. https://doi.org/10.1109/TAP.2020.3016479

    Article  Google Scholar 

  69. Geng, M. Y., Liu, Z. G., Wu, W. J., Chen, H., Wu, B., & Lu, W. B. (2020). A dynamically tunable microwave absorber based on graphene. IEEE Transactions on Antennas and Propagation, 68(6), 4706–4713. https://doi.org/10.1109/TAP.2020.2972646

    Article  Google Scholar 

  70. Huang, C., Song, J., Ji, C., Yang, J., & Luo, X. (2021). Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface. IEEE Transactions on Antennas and Propagation, 69(3), 1793–1798. https://doi.org/10.1109/TAP.2020.3011115

    Article  Google Scholar 

  71. Huang, X., Lin, M., Wu, Z., Cheng, K., Tian, T., Guan, D., Sun, X., Hu, S., Liang, Y., Liu, J., Zou, Y., & Liu, P. (2020). Screen overprinted flexible radar absorber composed of planar resistor loaded metamaterials. IEEE Antennas and Wireless Propagation Letters, 19(8), 1281–1285. https://doi.org/10.1109/LAWP.2020.2994986

    Article  Google Scholar 

  72. Zhou, P., Wang, L., Zhang, G., Jiang, J., Chen, H., Zhou, Y., Liang, D., & Deng, L. (2019). A stretchable metamaterial absorber with deformation compensation design at microwave frequencies. IEEE Transactions on Antennas and Propagation, 67(1), 291–297. https://doi.org/10.1109/TAP.2018.2877300

    Article  Google Scholar 

  73. Tak, J. (2017). A wearable metamaterial microwave absorber. IEEE Antennas and Wireless Propagation Letters, 16, 784–787. https://doi.org/10.1109/LAWP.2016.2604257

    Article  Google Scholar 

  74. Jha, K. R., Jibran, Z. A. P., & Sharma, S. K. (2022). Absorption peak controlled low-frequency wideband flexible FSS absorber. IEEE Transactions on Electromagnetic Compatibility, 64(4), 975–986. https://doi.org/10.1109/TEMC.2022.3159746

    Article  Google Scholar 

  75. Lai, S., Guo, Y., Liu, G., Liu, Y., Fu, C., Chang, H., Wu, Y., & Gu, W. (2022). A high-performance ultra-broadband transparent absorber with a patterned ITO metasurface. IEEE Photonics Journal, 14(3), 4629107. https://doi.org/10.1109/JPHOT.2022.3171864

    Article  Google Scholar 

  76. Fang, Y., Pan, K., Leng, T., Ouslimani, H. H., Novoselov, K. S., & Hu, Z. (2021). Controlling graphene sheet resistance for broadband printable and flexible artificial magnetic conductor-based microwave radar absorber applications. IEEE Transactions on Antennas and Propagation, 69(12), 8503–8511. https://doi.org/10.1109/TAP.2021.3098538

    Article  Google Scholar 

  77. Jiang, H., Yang, W., Li, R., Lei, S., Chen, B., Hu, H., & Zhao, Z. (2021). A conformal metamaterial-based optically transparent microwave absorber with high angular stability. IEEE Antennas and Wireless Propagation Letters, 20(8), 1399–1403. https://doi.org/10.1109/LAWP.2021.3081620

    Article  Google Scholar 

  78. Tirkey, M. M., & Gupta, N. (2021). Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber. IEEE Transactions on Electromagnetic Compatibility, 63(6), 1829–1836. https://doi.org/10.1109/TEMC.2021.3089830

    Article  Google Scholar 

  79. Parker E. A., & El Sheikh A. N. A. (1991). Convoluted array elements and reduced size unit cells for frequency-selective surfaces. In IEEE Proceedings H (Microwaves, Antennas and Propagation), 138(1), 19–22. https://doi.org/10.1049/ip-h-2.1991.0004

  80. Xue, K., Zhai, H., Li, S., & Shang, Y. (2020). A miniaturized absorber frequency selective surface with good angular stability. IEEE Antennas and Wireless Propagation Letters, 19(1), 24–28. https://doi.org/10.1109/LAWP.2019.2951734

    Article  Google Scholar 

  81. Padilla, W. (2010). Perfect electromagnetic absorbers from microwave to optical. SPIE Newsroom. https://doi.org/10.1117/2.1201009.003137

    Article  Google Scholar 

  82. Ruck, G. (1970). Radar cross section handbook. Springer.

    Book  Google Scholar 

  83. Tayde, Y., Saikia, M., Srivastava, K. V., & Ramakrishna, S. A. (2018). Polarization-insensitive broadband multi-layered absorber using screen printed patterns of resistive ink. IEEE Antennas and Wireless Propagation Letters, 17(12), 2489–2493. https://doi.org/10.1109/LAWP.2018.2879274

    Article  Google Scholar 

  84. Lin, X. Q., Mei, P., Zhang, P. C., Chen, Z. Z. D., & Fan, Y. (2016). Development of a resistor-loaded ultrawideband absorber with antenna reciprocity. IEEE Transactions on Antennas and Propagation, 64(11), 4910–4913. https://doi.org/10.1109/TAP.2016.2598202

    Article  Google Scholar 

  85. Sambhav, S., Ghosh, J., & Singh, A. K. (2021). Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings. IEEE Transactions on Electromagnetic Compatibility, 63(5), 1333–1340. https://doi.org/10.1109/TEMC.2021.3058583

    Article  Google Scholar 

  86. Lin, K. T., Lin, H., Yang, T., & Jia, B. (2020). Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications, 11(1), 1389. https://doi.org/10.1038/s41467-020-15116-z

    Article  Google Scholar 

  87. Costa, F., Genovesi, S., Monorchio, A., & Manara, G. (2013). A circuit-based model for the interpretation of perfect metamaterial absorbers. IEEE Transactions on Antennas and Propagation, 61(3), 1201–1209. https://doi.org/10.1109/TAP.2012.2227923

    Article  Google Scholar 

  88. Jain, P., Singh, A. K., Pandey, J. K., Garg, S., Bansal, S., Agarwal, M., Kumar, S., Sardana, N., Gupta, N., & Singh, A. K. (2020). Ultra-thin metamaterial perfect absorbers for single-/dual-/multi-band microwave applications. IET Microwaves, Antennas & Propagation, 14(5), 390–396. https://doi.org/10.1049/iet-map.2019.0623

    Article  Google Scholar 

  89. Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Materials, 24(23), OP98–OP120. https://doi.org/10.1002/adma.201200674

    Article  Google Scholar 

  90. Singh, P. K., Korolev, K. A., Afsar, M. N., & Sonkusale, S. (2011). Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Applied Physics Letters, 99(26), 264101. https://doi.org/10.1063/1.3672100

    Article  Google Scholar 

  91. Sakran, F., Neve-Oz, Y., Ron, A., Golosovsky, M., Davidov, D., & Frenkel, A. (2008). Absorbing frequency-selective-surface for the mm-wave range. IEEE Transactions on Antennas and Propagation, 56(8), 2649–2655. https://doi.org/10.1109/TAP.2008.924701

    Article  Google Scholar 

  92. Schimert, T. R., Brouns, A. J., Chan, C. H., & Mittra, R. (1991). Investigation of millimeter-wave scattering from frequency selective surfaces. IEEE Transactions on Microwave Theory and Techniques, 39(2), 315–322. https://doi.org/10.1109/22.102976

    Article  Google Scholar 

  93. Wang, X., Diaz-Rubio, A., Sneck, A., Alastalo, A., Makela, T., Ala-Laurinaho, J., Zheng, J., Raisanen, A. V., & Tretyakov, S. A. (2018). Systematic design of printable metasurfaces: Validation through reverse-offset printed millimeter-wave absorbers. IEEE Transactions on Antennas and Propagation, 66(3), 1340–1351. https://doi.org/10.1109/TAP.2017.2783324

    Article  Google Scholar 

  94. Singh, H., Gupta, A., Kaler, R. S., Singh, S., & Gill, A. S. (2022). Designing and analysis of ultrathin metamaterial absorber for W band biomedical sensing application. IEEE Sensors Journal, 22(11), 10524–10531. https://doi.org/10.1109/JSEN.2022.3168827

    Article  Google Scholar 

  95. Chen, H. T., Padilla, W. J., Cich, M. J., Azad, A. K., Averitt, R. D., & Taylor, A. J. (2009). A metamaterial solid-state terahertz phase modulator. Nature Photonics, 3(3), 148–151. https://doi.org/10.1038/nphoton.2009.3

    Article  Google Scholar 

  96. Du, K., Li, Q., Zhang, W., Yang, Y., & Qiu, M. (2015). Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers. IEEE Photonics Journal, 7(3), 6800908. https://doi.org/10.1109/JPHOT.2015.2406763

    Article  Google Scholar 

  97. Pu, M., Wang, M., Hu, C., Huang, C., Zhao, Z., Wang, Y., & Luo, X. (2012). Engineering heavily doped silicon for broadband absorber in the terahertz regime. Optics Express, 20(23), 25513–25519. https://doi.org/10.1364/OE.20.025513

    Article  Google Scholar 

  98. Iwaszczuk, K., Strikwerda, A. C., Fan, K., Zhang, X., Averitt, R. D., & Jepsen, P. U. (2012). Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Optics Express, 20(1), 635–643. https://doi.org/10.1364/OE.20.000635

    Article  Google Scholar 

  99. Yan, D., & Li, J. (2019). Tunable all-graphene-dielectric single-band terahertz wave absorber. Journal of Physics D: Applied Physics, 52(27), 275102. https://doi.org/10.1088/1361-6463/ab1892

    Article  Google Scholar 

  100. Wang, B. X. (2017). Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics, 23(4), 4700107. https://doi.org/10.1109/JSTQE.2016.2547325

    Article  Google Scholar 

  101. Wang, J., Lang, T., Hong, Z., Xiao, M., & Yu, J. (2021). Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials, 11(5), 1110. https://doi.org/10.3390/nano11051110

    Article  Google Scholar 

  102. Ma, Q., Hong, W., & Shui, L. (2021). Structural optimization of single-layer graphene metamaterial for ultra-broadband terahertz absorber. IEEE Photonics Journal, 13(5), 4600307. https://doi.org/10.1109/JPHOT.2021.3109008

    Article  Google Scholar 

  103. Shi, C., Zang, X., Wang, Y., Chen, L., Cai, B., & Zhu, Y. (2014). A polarization-independent broadband terahertz absorber. Applied Physics Letters, 105(3), 031104. https://doi.org/10.1063/1.4890617

    Article  Google Scholar 

  104. Yin, S., Zhu, J., Xu, W., Jiang, W., Yuan, J., Yin, G., Xie, L., Ying, Y., & Ma, Y. (2015). High-performance terahertz wave absorbers made of silicon-based metamaterials. Applied Physics Letters, 107(7), 073903. https://doi.org/10.1063/1.4929151

    Article  Google Scholar 

  105. Wang, Y., Zhu, D., Cui, Z., Yue, L., Zhang, X., Hou, L., Zhang, K., & Hu, H. (2020). Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Transactions on Terahertz Science and Technology, 10(6), 599–605. https://doi.org/10.1109/TTHZ.2020.3010164

    Article  Google Scholar 

  106. Cole, M. A., Powell, D. A., & Shadrivov, I. V. (2016). Strong terahertz absorption in all-dielectric Huygen’s metasurfaces. Nanotechnology, 27(42), 424003. https://doi.org/10.1088/0957-4484/27/42/424003

    Article  Google Scholar 

  107. Wang, J., Wn, X., & Jiang, Y. (2021). Tunable triple-band terahertz absorber based on bulk-dirac-semimetal metasurface. IEEE Photonics Journal, 13(4), 4600105. https://doi.org/10.1109/JPHOT.2021.3088868

    Article  Google Scholar 

  108. Liu, C., Xu, Y., Liu, H., Lin, M., & Zha, S. (2021). Switchable metamaterial with terahertz buffering and absorbing performance. IEEE Photonics Journal, 13(5), 4600408. https://doi.org/10.1109/JPHOT.2021.3107533

    Article  Google Scholar 

  109. Nejat, M., & Nozhat, N. (2019). Design, theory, and circuit model of wideband tunable and polarization-insensitive terahertz absorber based on graphene. IEEE Transactions on Nanotechnology, 18, 684–690. https://doi.org/10.1109/TNANO.2019.2925964

    Article  Google Scholar 

  110. Hoa, N. T. Q., Lam, P. H., Tung, P. D., Tuan, T. S., & Nguyen, H. (2019). Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics Journal, 11(1), 4600208. https://doi.org/10.1109/JPHOT.2018.2888971

    Article  Google Scholar 

  111. Zhou, J., Liu, X., Zhang, H., Liu, M., Yi, Q., Liu, Z., & Wang, J. (2021). Cross-shaped titanium resonators based metasurface for ultra-broadband solar absorption. IEEE Photonics Journal, 13(1), 4800108. https://doi.org/10.1109/JPHOT.2021.3052990

    Article  Google Scholar 

  112. Luhmann, N., Hoj, D., Piller, M., Kahler, H., Chien, M., West, R. G., Andersen, U. L., & Schmid, S. (2020). Ultrathin 2 nm gold as impedance-matched absorber for infrared light. Nature Communications, 11(1), 2161. https://doi.org/10.1038/s41467-020-15762-3

    Article  Google Scholar 

  113. Centurioni, E. (2005). Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Applied Optics, 44(35), 7532–7539. https://doi.org/10.1364/AO.44.007532

    Article  Google Scholar 

  114. Lin, Z. C., Zhang, Y., Li, L., Zhao, Y. T., Chen, J., & Xu, K. D. (2023). Extremely wideband metamaterial absorber using spatial lossy transmission lines and resistively loaded high impedance surface. IEEE Transactions on Microwave Theory and Techniques. https://doi.org/10.1109/TMTT.2023.3259530

    Article  Google Scholar 

  115. Zhixin, Y., Shaoqiu, X., Li, Y., & Wang, B. Z. (2021). On the design of wideband absorber based on multilayer and multiresonant FSS Array. IEEE Antennas and Wireless Propagation Letters, 20(3), 284–288. https://doi.org/10.1109/LAWP.2020.3046010

    Article  Google Scholar 

  116. Wu, Y., Fu, C., Qian, S., Zong, Z., Wu, X., Yue, Y., & Gu, W. (2020). Flexible and transparent W-band absorber fabricated by EHD printing technology. IEEE Antennas and Wireless Propagation Letters, 19(8), 1345–1349. https://doi.org/10.1109/LAWP.2020.3000786

    Article  Google Scholar 

  117. Wang, H., Kong, P., Cheng, W., Bao, W., Yu, X., Miao, L., & Jiang, J. (2016). Broadband tunability of polarization-insensitive absorber based on frequency selective surface. Scientific Reports, 6(1), 23081. https://doi.org/10.1038/srep23081

    Article  Google Scholar 

  118. Mittra R., Chan C. H., & Cwik T. (1988). Techniques for analyzing frequency selective surfaces-a review. In IEEE Proceedings IRE* (through 1962), 76(12), 1593–1615. https://doi.org/10.1109/5.16352

  119. Harms, P., & Ko, W. (1994). Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation, 42(9), 1317–1324. https://doi.org/10.1109/8.318653

    Article  Google Scholar 

  120. Encinar, J. A. (1990). Mode-matching and point-matching techniques applied to the analysis of metal-strip-loaded dielectric antennas. IEEE Transactions on Antennas and Propagation, 38(9), 1405–1412. https://doi.org/10.1109/8.56992

    Article  Google Scholar 

  121. Yakovlev, A. B., Khalil, A. I., Hicks, C. W., Mortazawi, A., & Steer, M. B. (2000). The generalized scattering matrix of closely spaced strip and slot layers in waveguide. IEEE Transactions on Microwave Theory and Techniques, 48(1), 126–137. https://doi.org/10.1109/22.817481

    Article  Google Scholar 

  122. Han, Y., Che, W., Christopoulos, C., Xiong, Y., & Chang, Y. (2016). A fast and efficient design method for circuit analog absorbers consisting of resistive square-loop arrays. IEEE Transactions on Electromagnetic Compatibility, 58(3), 747–757. https://doi.org/10.1109/TEMC.2016.2524553

    Article  Google Scholar 

  123. Marcuvitz, N. (1951). Waveguide handbook. McGraw-Hill.

    Google Scholar 

  124. Sauleau, R., Coquet, P., & Daniel, J. P. (2002). Validity and accuracy of equivalent circuit models of passive inductive meshes. Definition of a novel model for 2D grids. International Journal of Infrared and Millimeter Waves, 23, 475–498. https://doi.org/10.1023/A:1015050023359

    Article  Google Scholar 

  125. Singh, D., Kumar, A., Meena, S., & Agarwala, V. (2012). Analysis of frequency selective surfaces for radar absorbing materials. Progress in Electromagnetics Research B, 38, 297–314. https://doi.org/10.2528/PIERB11121601

    Article  Google Scholar 

  126. Langley, R. J., & Parker, E. A. (1982). Equivalent circuit model for arrays of square loops. Electronics Letters, 18(7), 294–296. https://doi.org/10.1049/el:19820201

    Article  Google Scholar 

  127. Langley, R. J., & Parker, E. A. (1983). Double-square frequency-selective surfaces and their equivalent circuit. Electronics Letters, 19(17), 675–677. https://doi.org/10.1049/el:19830460

    Article  Google Scholar 

  128. Langley R. J., & Drinkwater A. J. (1982). Improved empirical model for the Jerusalem cross. In IEE Proceedings H (Microwaves, Optics and Antennas), 129(1), 1–6. https://doi.org/10.1049/ip-h-1.1982.0001

  129. Costa, F., Monorchio, A., & Manara, G. (2012). Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 54(4), 35–48. https://doi.org/10.1109/MAP.2012.6309153

    Article  Google Scholar 

  130. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059–2074. https://doi.org/10.1109/22.798001

    Article  Google Scholar 

  131. Hossain, M. I., Nguyen-Trong, N., Sayidmarie, K. H., & Abbosh, A. M. (2020). Equivalent circuit design method for wideband nonmagnetic absorbers at low microwave frequencies. IEEE Transactions on Antennas and Propagation, 68(12), 8215–8220. https://doi.org/10.1109/TAP.2020.2983756

    Article  Google Scholar 

  132. Ghosh, S., & Srivastava, K. V. (2015). An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, 14, 511–514. https://doi.org/10.1109/LAWP.2014.2369732

    Article  Google Scholar 

  133. Kundu, D., Mohan, A., & Chakrabarty, A. (2016). Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas and Wireless Propagation Letters, 15, 1589–1592. https://doi.org/10.1109/LAWP.2016.2517663

    Article  Google Scholar 

  134. Pozar, D. M. (2012). Microwave engineering. John Wiley & Sons Inc.

    Google Scholar 

  135. Chen, H. T. (2012). Interference theory of metamaterial perfect absorbers. Optics Express, 20(7), 7165–7172. https://doi.org/10.1364/OE.20.007165

    Article  Google Scholar 

  136. Nilotpal, B. S., & Chakrabarti, P. (2020). Mathematical interpretation of wave propagation, standing wave resonance, and absorption in a metasurface absorber. Optical Engineering, 59(10), 107102. https://doi.org/10.1117/1.OE.59.10.107102

    Article  Google Scholar 

  137. Baena, J. D., Glybovski, S. B., del Risco, J. P., Slobozhanyuk, A. P., & Belov, P. A. (2017). Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces. IEEE Transactions on Antennas and Propagation, 65(8), 4124–4133. https://doi.org/10.1109/TAP.2017.2717964

    Article  MathSciNet  MATH  Google Scholar 

  138. Harrington, R. F. (1961). Time-harmonic electromagnetic fields. McGraw-Hill.

    Google Scholar 

  139. Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 79(12), 125104. https://doi.org/10.1103/PhysRevB.79.125104

    Article  Google Scholar 

  140. Zhu, B., Wang, Z., Huang, C., Feng, Y., Zhao, J., & Jiang, T. (2010). Polarization insensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 101, 231–239. https://doi.org/10.2528/PIER10011110

    Article  Google Scholar 

  141. Lv, Q., Jin, C., Zhang, B., Zhang, P., Wang, J., Kang, N., & Tian, B. (2023). Wideband dual-polarized microwave absorber at extremely oblique incidence. IEEE Transactions on Antennas and Propagation, 71(3), 2497–2506. https://doi.org/10.1109/TAP.2022.3233480

    Article  Google Scholar 

  142. Kundu, D., Mohan, A., & Chakrabarty, A. (2017). Comment on Wide-angle broadband microwave metamaterial absorber with octave bandwidth. IET Microwaves, Antennas & Propagation, 11(3), 442–443. https://doi.org/10.1049/iet-map.2016.0743

    Article  Google Scholar 

  143. Hu, N., Zhang, J., Zha, S., Liu, C., & Liu, P. (2019). Design of a multilayer broadband switchable absorber based on semiconductor switch. IEEE Antennas and Wireless Propagation Letters, 18(2), 373–377. https://doi.org/10.1109/LAWP.2019.2891839

    Article  Google Scholar 

  144. Turki, B. M., Parker, E. A., Wunscher, S., Schubert, U. S., Saunders, R., Sanchez-Romaguera, V., Ziai, M. A., Yeates, S. G., & Batchelor, J. C. (2016). Significant factors in the inkjet manufacture of frequency-selective surfaces. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(6), 933–940. https://doi.org/10.1109/TCPMT.2016.2561972

    Article  Google Scholar 

  145. Chou, H. T., & Chang, Y. S. (2021). Statistical analysis of fabrication discrepancy effects on periodic circuit analog electromagnetic absorbers. IEEE Transactions on Electromagnetic Compatibility, 63(2), 410–418. https://doi.org/10.1109/TEMC.2020.3012585

    Article  Google Scholar 

  146. Yoo, M., Kim, H. K., Kim, S., Tentzeris, M., & Lim, S. (2015). Silver nanoparticle-based inkjet-printed metamaterial absorber on flexible paper. IEEE Antennas and Wireless Propagation Letters, 14, 1718–1721. https://doi.org/10.1109/LAWP.2015.2420712

    Article  Google Scholar 

  147. Wu, Y., Deng, Y., Wang, J., Zong, Z., Chen, X., & Gu, W. (2019). THz broadband absorber fabricated by EHD printing technology with high error tolerance. IEEE Transactions on Terahertz Science and Technology, 9(6), 637–642. https://doi.org/10.1109/TTHZ.2019.2943564

    Article  Google Scholar 

  148. Liu, N., Mesch, M., Weiss, T., Hentschel, M., & Giessen, H. (2010). Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 10(7), 2342–2348. https://doi.org/10.1021/nl9041033

    Article  Google Scholar 

  149. Wu, C., Neuner, B., III., Shvets, G., John, J., Milder, A., Zollars, B., & Savoy, S. (2011). Large-area wide-angle spectrally selective plasmonic absorber. Physical Review B, 84(7), 075102. https://doi.org/10.1103/PhysRevB.84.075102

    Article  Google Scholar 

  150. (1998). IEEE recommended practice for radio-frequency (RF) absorber evaluation in the range of 30 MHz to 5 GHz. IEEE Std 1128–1998, 1–68. https://doi.org/10.1109/IEEESTD.1998.87821

  151. (2017). IEEE recommended practice for radio-frequency (RF) absorber evaluation in the range of 30 MHz to 40 GHz. Project No. P1128, Last Accessed at 30 April 2023. Available on https://standards.ieee.org/ieee/1128/7220

  152. (1988). American National Standard for Instrumentation − Electromagnetic Noise and Field Strength, 10kHz to 40 GHz - Specifications. ANSI Std C63.2–1987, 1–24. https://doi.org/10.1109/IEEESTD.1988.79635

  153. (2017). American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz Amendment 1: Test Site Validation. ANSI C63.4a-2017 (Amendment to ANSI C63.4-2014), 1–64. https://doi.org/10.1109/IEEESTD.2017.8066479

  154. (2019). Specification for radio disturbance and immunity measuring apparatus and methods - Part 1–1: Radio disturbance and immunity measuring apparatus - Measuring apparatus. CISPR 16–1–1:2019. Last accessed at 30 April 2023. Available on https://webstore.iec.ch/publication/60774#additionalinfo

  155. Nguyen, T. T., & Lim, S. (2017). Bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber using a hybrid unit cell. Scientific Reports, 7(1), 14814. https://doi.org/10.1038/s41598-017-14792-0

    Article  Google Scholar 

  156. Hossain, M. I., Nguyen-Trong, N., & Abbosh, A. M. (2020). Calibrated parallel-plate waveguide technique for low-frequency and broadband absorptivity measurement. IEEE Antennas and Wireless Propagation Letters, 19(9), 1541–1545. https://doi.org/10.1109/LAWP.2020.3008889

    Article  Google Scholar 

  157. Wang, J., Deng, Y., Wu, Y., Lai, S., & Gu, W. (2019). A single-resonant-structure and optically transparent broadband THz metamaterial absorber. Journal of Infrared, Millimeter, and Terahertz Waves, 40(6), 648–656. https://doi.org/10.1007/s10762-019-00598-w

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Debidas Kundu and Dharmendra Singh had the idea for the article. Priyanka Bajaj performed the literature search and data analysis. Priyanka Bajaj and Debidas Kundu drafted the work.

Corresponding author

Correspondence to Priyanka Bajaj.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, P., Kundu, D. & Singh, D. Frequency Selective Surface-Based Electromagnetic Absorbers: Trends and Perspectives. Wireless Pers Commun 131, 1881–1912 (2023). https://doi.org/10.1007/s11277-023-10525-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10525-x

Keywords

Navigation