Skip to main content

Advertisement

Log in

An Adaptive Fuzzy C Means with Seagull Optimization Algorithm for Analysis of WSNs in Agricultural Field with IoT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, the environmental monitoring in agriculture field is an essential required application. To achieve the environmental monitoring of agriculture fields, the wireless sense networks (WSN) and internet of things is utilized. In the WSN, the energy consumption is a main issue to access the medium and transfer the networks. Hence, in this paper, adaptive fuzzy C means clustering and seagull optimization algorithm is developed for monitoring environmental conditions in agriculture field. Two main objective functions are utilized to empower the presentation of the WSN such as load balancing and energy efficient operation. The proposed method is a combination of fuzzy C means clustering and seagull optimization algorithm (SOA). The energy efficient and load balancing is achieved by optimal routing scheme by proposed method. The fuzzy C-means clustering is utilized to empower the energy efficient operation and load balancing. In the fuzzy C-means clustering, the SOA is utilized to select the optimal path selection. The proposed method is executed by NS2 simulator and performances are compared with existing methods such as atom search optimization and emperor penguin optimization respectively. The performance metrics are delay, drop, throughput, energy consumption, network lifetime, overhead and delivery ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Nikolidakis, S. A., Kandris, D., Vergados, D. D., & Douligeri, C. (2015). Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture, 113, 154–163. https://doi.org/10.1016/j.compag.2015.02.004

    Article  Google Scholar 

  2. Bayrakdar, M. E. (2020). Energy-efficient technique for monitoring of agricultural areas with terrestrial wireless sensor networks. Journal of Circuits Systems and Computers, 29(9), 2050141. https://doi.org/10.1142/S0218126620501418

    Article  Google Scholar 

  3. Sudha, M. N., Valarmathi, M. L., & Babu, A. S. (2011). Energy efficient data transmission in automatic irrigation system using wireless sensor networks. Computers and Electronics in Agriculture, 78(2), 215–221. https://doi.org/10.1016/j.compag.2011.07.009

    Article  Google Scholar 

  4. Alia, O. M. (2014). A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks. The Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/647281

    Article  Google Scholar 

  5. Mittal, N. (2019). Moth flame optimization based energy efficient stable clustered routing approach for wireless sensor networks. Wireless Personal Communications, 104(2), 677–694. https://doi.org/10.1007/s11277-018-6043-4

    Article  Google Scholar 

  6. Haseeb, K., Ud Din, I., Almogren, A., & Islam, N. (2020). An energy efficient and secure IoT-based WSN framework: An application to smart agriculture. Sensors (Switzerland), 20(7), 2081. https://doi.org/10.3390/s20072081

    Article  Google Scholar 

  7. Chauhan, V., & Soni, S. (2020). Mobile sink-based energy efficient cluster head selection strategy for wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4453–4466. https://doi.org/10.1007/s12652-019-01509-6

    Article  Google Scholar 

  8. Preeth, S. K., Dhanalakshmi, R., Kumar, R., & Shakeel, P. M. (2018). An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-1154-z

    Article  Google Scholar 

  9. Wang, T., Zhang, G., Yang, X., & Vajdi, A. (2018). Genetic algorithm for energy-efficient clustering and routing in wireless sensor networks. Journal of Systems and Software, 146, 196–214. https://doi.org/10.1016/j.jss.2018.09.067

    Article  Google Scholar 

  10. Lin, D., & Wang, Q. (2019). An energy-efficient clustering algorithm combined game theory and dual-cluster-head mechanism for WSNs. IEEE Access, 7, 49894–49905. https://doi.org/10.1109/ACCESS.2019.2911190

    Article  Google Scholar 

  11. Zhang, Y., Wang, J., Han, D., Huafeng, Wu., & Zhou, R. (2017). Fuzzy-logic based distributed energy-efficient clustering algorithm for wireless sensor networks. Sensors (Switzerland), 17(7), 1554. https://doi.org/10.3390/s17071554

    Article  Google Scholar 

  12. Zhao, Z., Kaida, Xu., Hui, G., & Liqin, Hu. (2018). An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization. Sensors (Switzerland), 18(11), 3938.

    Article  Google Scholar 

  13. Han, X., Quan, L., Xiong, X., Almeter, M., Xiang, J., & Lan, Y. (2017). A novel data clustering algorithm based on modified gravitational search algorithm. Engineering Applications of Artificial Intelligence, 61, 1–7. https://doi.org/10.1016/j.engappai.2016.11.003

    Article  Google Scholar 

  14. Sahoo, B. M., Amgoth, T., & Pandey, H. M. (2020). Particle swarm optimization based energy efficient clustering and sink mobility in heterogeneous wireless sensor network. Ad Hoc Networks, 106, 102237. https://doi.org/10.1016/j.adhoc.2020.102237

    Article  Google Scholar 

  15. Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413. https://doi.org/10.1007/s11276-017-1566-2

    Article  Google Scholar 

  16. Rodríguez, A., Del-Valle-Soto, C., & Velázquez, R. (2020). Energy-efficient clustering routing protocol for wireless sensor networks based on yellow saddle goatfish algorithm. Mathematics, 8(9), 1515. https://doi.org/10.3390/math8091515

    Article  Google Scholar 

  17. Sinde, R., Begum, F., Njau, K., & Kaijage, S. (2020). Refining network lifetime of wireless sensor network using energy-efficient clustering and DRL-based sleep scheduling. Sensors (Switzerland), 20(5), 1540. https://doi.org/10.3390/s20051540

    Article  Google Scholar 

  18. Rathore, R. S., Sangwan, S., Prakash, S., Adhikari, K., Kharel, R., & Cao, Y. (2020). Hybrid WGWO: Whale grey wolf optimization-based novel energy-efficient clustering for EH-WSNs. Eurasip Journal on Wireless Communications and Networking, 2020(1), 1–28. https://doi.org/10.1186/s13638-020-01721-5

    Article  Google Scholar 

  19. Ebrahimi Mood, S., & Javidi, M. M. (2020). Energy-efficient clustering method for wireless sensor networks using modified gravitational search algorithm. Evolving Systems, 11(4), 575–587. https://doi.org/10.1007/s12530-019-09264-x

    Article  Google Scholar 

  20. Aroba, O. J., Naicker, N., & Adeliyi, T. (2021). An innovative hyperheuristic, Gaussian clustering scheme for energy-efficient optimization in wireless sensor networks. Journal of Sensors, 2021, 1–12. https://doi.org/10.1155/2021/6666742

    Article  Google Scholar 

  21. Ajmi, N., Helali, A., Lorenz, P., & Mghaieth, R. (2021). MWCSGA-multi weight chicken swarm based genetic algorithm for energy efficient clustered wireless sensor network. Sensors (Switzerland), 21(3), 1–21. https://doi.org/10.3390/s21030791

    Article  Google Scholar 

  22. Jasim, A. A., Idris, M. Y. I., Azzuhri, S. R. B., Issa, N. R., & Rahman, M. T. (2021). Energy-efficient wireless sensor network with an unequal clustering protocol based on a balanced energy method (EEUCB). Sensors (Switzerland), 21(3), 1–40. https://doi.org/10.3390/s21030784

    Article  Google Scholar 

  23. El Khediri, S., Nasri, N., Khan, R. U., & Kachouri, A. (2021). An improved energy efficient clustering protocol for increasing the life time of wireless sensor networks. Wireless Personal Communications, 116(1), 539–558. https://doi.org/10.1007/s11277-020-07727-y

    Article  Google Scholar 

  24. Rajput, A., & Kumaravelu, V. B. (2019). Scalable and sustainable wireless sensor networks for agricultural application of internet of things using fuzzy c-means algorithm. Sustainable Computing: Informatics and Systems, 22, 62–74. https://doi.org/10.1016/j.suscom.2019.02.003

    Article  Google Scholar 

  25. Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  26. Dhiman, G., Singh, K. K., Soni, M., Nagar, A., Dehghani, M., Slowik, A., & Cengiz, K. (2021). MOSOA: A new multi-objective seagull optimization algorithm. Expert Systems with Applications, 167, 114150. https://doi.org/10.1016/j.eswa.2020.114150

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karunkuzhali.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunkuzhali, D., Meenakshi, B. & Lingam, K. An Adaptive Fuzzy C Means with Seagull Optimization Algorithm for Analysis of WSNs in Agricultural Field with IoT. Wireless Pers Commun 126, 1459–1480 (2022). https://doi.org/10.1007/s11277-022-09801-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09801-z

Keywords

Navigation