Skip to main content

Advertisement

Log in

Renewable Energy Aware Traffic Grooming in Hybrid Optical and WiMAX Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Hybrid networks have recently received a lot of attention as a means to address some of the issues that standard access networks face. The hybrid network formed by connecting back-end network with an optical fiber network, and the front-end with a wireless network. Hybrid network combines the advantages of wireless networks, including higher flexibility, universality connectivity, and cost-effectiveness with the high bandwidth passive optical networks. However, the integrated approach is consumes lots of non renewable energy, to cater to the end-users. A huge amount of non-renewable energy is consumed to cater to a large geographical area. In order to minimize the energy consumption renewable energy resource are replaced with the renewable energy resources. The use of renewable resources has been researched separately for optical and wireless networks. In order to minimize the traditional fossil energy consumption for Hybrid networks, we have proposed renewable energy-aware traffic grooming algorithms for hybrid networks. In our work, each network node is capable of producing renewable energy in a decentralized way. Here brown energy is used as reserve energy since renewable energy sources are climate dependent. Our algorithms efficiently utilize the renewable energy available at the nodes to route the network traffic demands. Further, we have provided the optimized content placement algorithm for virtual machine in order to minimize the energy consumption and to meet the service level agreement at the data centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhou, H., Mao, S., & Agrawal, P. (2015). Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Communications and Networks, 1(3), 171–180.

    Article  Google Scholar 

  2. Peng, M., Li, Y., Jiang, J., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. arXiv:1410.3028

  3. Luo, C., Guo, S., Guo, S., Yang, L. T., Min, G., & Xie, X. (2014). Green communication in energy renewable wireless mesh networks: Routing, rate control, and power allocation. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3211–3220.

    Article  Google Scholar 

  4. Nikoukar, A., Hwang, I.-S., Liem, A. T., & Wang, C.-J. (2015). Qos-aware energy-efficient mechanism for sleeping mode onus in enhanced epon. Photonic Network Communications, 30(1), 59–70.

    Article  Google Scholar 

  5. Hiremath, R. B., Kumar, B., Balachandra, P., & Ravindranath, N. H. (2011). Implications of decentralised energy planning for rural India. Journal of Sustainable Energy & Environment, 2, 31–40.

    Google Scholar 

  6. Hiremath, R. B., Shikha, S., & Ravindranath, N. H. (2007). Decentralized energy planning; Modeling and application-a review. Renewable and Sustainable Energy Reviews, 11(5), 729–752.

    Article  Google Scholar 

  7. Deshmukh, M. K., & Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 12(1), 235–249.

    Article  MathSciNet  Google Scholar 

  8. Humar, I., Ge, X., Xiang, L., Jo, M., Chen, M., & Zhang, J. (2011). Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network, 25(2), 40–49.

    Article  Google Scholar 

  9. Mukherjee, B., Ou, C. S., Zhu, H., Zhu, K., Singhal, N., & Yao, S. (2004). Traffic grooming in mesh optical networks. In Optical Fiber Communication Conference, page ThG1. Optical Society of America

  10. Huang, S., & Dutta, R. (2007). Dynamic traffic grooming: The changing role of traffic grooming. IEEE Communications Surveys & Tutorials, 9(1), 32–50.

    Article  Google Scholar 

  11. Zheng, Z., Wang, J., & Wang, X. (2009). Onu placement in fiber-wireless (fiwi) networks considering peer-to-peer communications. In GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, pp. 1–7. IEEE

  12. Ghazisaidi, N., Maier, M., & Assi, C. M. (2009). Fiber-wireless (fiwi) access networks: A survey. IEEE Communications Magazine, 47(2), 160–167.

    Article  Google Scholar 

  13. Hasan, M. M., Farahmand, F., & Jue, J. P. (2010). Energy-awareness in dynamic traffic grooming. In Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1–3. IEEE

  14. Zhu, K., & Mukherjee, B. (2002). Traffic grooming in an optical wdm mesh network. IEEE Journal on Selected Areas in Communications, 20(1), 122–133.

    Article  Google Scholar 

  15. Shen, G., & Tucker, R. S. (2009). Energy-minimized design for ip over wdm networks. Journal of Optical Communications and Networking, 1(1), 176–186.

    Article  Google Scholar 

  16. Liu, L., & Ramamurthy, B. (2011). Rightsizing bundle link capacities for energy savings in the core network. In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–6. IEEE

  17. Idzikowski, F., Orlowski, S., Raack, C., Woesner, H., & Wolisz, A. (2010). Saving energy in ip-over-wdm networks by switching off line cards in low-demand scenarios. In 2010 14th Conference on Optical Network Design and Modeling (ONDM), pp. 1–6. IEEE

  18. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., & Wright, S. (2008). Power awareness in network design and routing. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp. 457–465. IEEE

  19. Gupta, M., & Singh, S. (2003). Greening of the internet. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’03, pp. 19–26

  20. Cianfrani, A., Eramo, V., Listanti, M., Marazza, M., & Vittorini, E. (2010). An energy saving routing algorithm for a green ospf protocol. In INFOCOM IEEE Conference on Computer Communications Workshops, 2010, pp. 1–5. IEEE

  21. Yang, Y., Lim, C., & Nirmalathas, A. (2011). Comparison of energy consumption of integrated optical-wireless access networks. In National Fiber Optic Engineers Conference, p. JWA082. Optical Society of America

  22. Chiaraviglio, L., Mellia, M., & Neri, F. (2012). Minimizing isp network energy cost: Formulation and solutions. IEEE/ACM Trans. Netw., 20(2), April

  23. Rehmani, M. H., Reisslein, M., Rachedi, A., Erol-Kantarci, M., & Radenkovic, M. (2018). Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Transactions on Industrial Informatics, 14(7), 2814–2825.

    Article  Google Scholar 

  24. Erol-Kantarci, M., & Mouftah, H. T. (2014). Overlay energy circle formation for cloud data centers with renewable energy futures contracts. In 2014 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE

  25. Ren, C., Wang, D., Urgaonkar, B., & Sivasubramaniam, A. (2012). Carbon-aware energy capacity planning for datacenters. In 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 391–400. IEEE

  26. Nguyen, K.-K., Cheriet, M., Lemay, M., Savoie, M., & Ho, B. (2013). Powering a data center network via renewable energy: A green testbed. IEEE Internet Computing, 17(1), 40–49.

    Article  Google Scholar 

  27. Lemay, M., Nguyen, K.-K., Arnaud, B. S., & Cheriet, M. (2012). Toward a zero-carbon network: Converging cloud computing and network virtualization. IEEE Internet Computing, 16(6), 51–59.

    Article  Google Scholar 

  28. Yoro, W., Chahed, T., El-Tabach, M., En-Najjary, T., & Gati, A. (2017). Service-oriented sharing of energy in wireless access networks using shapley value. Computer Networks, 113, 46–57.

    Article  Google Scholar 

  29. Ghamkhari, M., & Mohsenian-Rad, H. (2013). Energy and performance management of green data centers: A profit maximization approach. IEEE Transactions on Smart Grid, 4(2), 1017–1025.

    Article  Google Scholar 

  30. Schöndienst, T., & Vokkarane, V. M. (2014). Renewable energy-aware grooming in optical networks. Photonic Network Communications, 28(1), 71–81.

    Article  Google Scholar 

  31. Wu, J., Zhang, Y., Zukerman, M., & Yung, E.K.-N. (2015). Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE Communications Surveys & Tutorials, 17(2), 803–826.

    Article  Google Scholar 

  32. Chamola, V., Sikdar, B., & Krishnamachari, B. (2017). Delay aware resource management for grid energy savings in green cellular base stations with hybrid power supplies. IEEE Transactions on Communications, 65(3), 1092–1104.

    Article  Google Scholar 

  33. Farooq, M. J., Ghazzai, H., Kadri, A., ElSawy, H., & Alouini, M.-S. (2017). A hybrid energy sharing framework for green cellular networks. IEEE Transactions on Communications, 65(2), 918–934.

    Article  Google Scholar 

  34. Chowdhury, P., Tornatore, M., Sarkar, S., & Mukherjee, B. (2009). Towards green broadband access networks. In GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, pp. 1–6. IEEE

  35. Musznicki, B., Tomczak, M., & Zwierzykowski, P. (2012). Dijkstra-based localized multicast routing in wireless sensor networks. In 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp. 1–6. IEEE

  36. Mineraud, J., Wang, L., Balasubramaniam, S., & Kangasharju, J. (2014) . Renewable energy-aware information-centric networking. arXiv:1412.6382

  37. Han, P., Guo, L., Liu, Y., Hou, J., & Han, X. (2016). Joint wireless and optical power states scheduling for green multi-radio fiber-wireless access network. Journal of Lightwave Technology, 34(11), 2610–2623.

    Article  Google Scholar 

  38. Chamola, V., Sikdar, B., & Krishnamachari, B. (2016). Delay aware resource management for grid energy savings in green cellular base stations with hybrid power supplies. IEEE Transactions on Communications, 65(3), 1092–1104.

    Article  Google Scholar 

  39. Li, W., Kanso, A. (2015). Comparing containers versus virtual machines for achieving high availability. In 2015 IEEE International Conference on Cloud Engineering, pp. 353–358. IEEE

  40. Shen, G., Lui, Y., & Bose, S. K. (2014). Follow the sun, follow the wind lightpath virtual topology reconfiguration in ip over wdm network. Journal of Lightwave Technology, 32(11), 2094–2105.

    Article  Google Scholar 

  41. Dong, X., El-Gorashi, T., & Elmirghani, J. M. H. (2011). Ip over wdm networks employing renewable energy sources. Journal of Lightwave Technology, 29(1), 3–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Deepa Naik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, D., Bauri, A. & De, T. Renewable Energy Aware Traffic Grooming in Hybrid Optical and WiMAX Networks. Wireless Pers Commun 123, 2317–2339 (2022). https://doi.org/10.1007/s11277-021-09243-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09243-z

Keywords

Navigation