Skip to main content

Advertisement

Log in

Non Orthogonal Multiple Access with Energy Harvesting Using Reconfigurable Intelligent Surfaces for Rayleigh Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we derive the throughput of non orthogonal multiple access (NOMA) through reconfigurable intelligent surfaces (RIS) with energy harvesting. The transmitter harvests energy using the radio frequency (RF) signal received from another node N. Node N can be any node transmitting RF signals. The harvested energy is used to transmit data to N NOMA users using RIS. RIS is placed between the transmitter and users. Different sets of reflectors are dedicated to different users. Each user receives all reflections over RIS with the same phase. We also optimize harvesting duration and power allocation coefficients to maximize the total throughput. We suggest the use of two RIS: the first RIS improves the energy harvesting process and is placed between node N and transmitter T. The second RIS is placed between T and users so that reflections have a null phase at all NOMA users. The derived results are valid for Rayleigh fading channels where the transmitter harvests energy using the received RF signals. We derive the throughput at weak and strong users as well as the total throughput of NOMA systems using RIS with energy harvesting. In this paper, we derive the packet error probability and total throughput for NOMA using RIS with energy harvesting using RF signals. When there are two users and 16QAM modulation is used and for a throughput of 3.5 bit/s/Hz, the use of \(R=512,256,128,64,32,16,8\) reflectors offers 69 dB, 62.8 dB, 57 dB, 50.9 dB, 45 dB, 38.5 dB, 31.8 dB gain with respect to the absence of RIS (Mondal et al. in Wirel Pers Commun, 2021; Le and Kong in Wirel Pers Commun 116:3577–3597, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Data and material are not available.

References

  1. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773.

    Article  Google Scholar 

  2. Zhang, H., Di, B., Song, L., & Han, Z. (2020). Reconfigurable intelligent surfaces assisted communications with limited phase shifts: how many phase shifts are enough? IEEE Transactions on Vehicular Technology, 69(4), 4498–4502.

    Article  Google Scholar 

  3. Di Renzo, M. (2019). 6G wireless: Wireless networks empowered by reconfigurable intelligent surfaces. In 2019 25th Asia-Pacific conference on communications (APCC).

  4. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications, 68, 3187–3196.

    Article  Google Scholar 

  5. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  6. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170.

    Article  Google Scholar 

  7. Alexandropoulos, G. C., Vlachos, E. (2020) A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP).

  8. Guo, H., Liang, Y.-C., Chen, J., & Larsson, E. G. (2020). Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Transactions on Wireless Communications, 19, 3064–3076.

    Article  Google Scholar 

  9. Thirumavalavan, V. C., Jayaraman, T. S. (2020). BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In 2020 International conference on communication systems and networks (COMSNETS).

  10. Pradhan, C., Li, A., Song, L., Vucetic, B., & Li, Y. (2020). Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wireless Communications Letters, 9, 1041–1045.

    Article  Google Scholar 

  11. Ying, K., Gao, Z., Lyu, S., Wu, Y., Wang, H., & Alouini, M.-S. (2020). GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8, 19530–19539.

    Article  Google Scholar 

  12. Yang, L., Guo, W., & Ansari, I. S. (2020). Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Communications Letters, 24, 1558–1562.

    Article  Google Scholar 

  13. Di, B., Zhang, H., Li, L., Song, L., Li, Y., & Han, Z. (2020). Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Transactions on Vehicular Technology, 69(4), 4565–4570.

    Article  Google Scholar 

  14. Nadeem, Q.-U.-A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. (2020). Asymptotic max–min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Transactions on Wireless Communications, 19, 7748–7764.

    Article  Google Scholar 

  15. Zhao, W., Wang, G., Atapattu, S., Tsiftsis, T. A., & Tellambura, C. (2020). Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Communications Letters, 24, 1342–1346.

    Article  Google Scholar 

  16. Li, S., Duo, B., Yuan, X., Liang, Y.-C., & Di Renzo, M. (2020). Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming. IEEE Wireless Communications Letters, 9, 716–720.

    Article  Google Scholar 

  17. Hua, S., & Shi, Y. (2019). Reconfigurable intelligent surface for green edge inference in machine learning. In 2019 IEEE globecom workshops (GC Wkshps).

  18. Huang, C., Alexandropoulos, G. C., Yuen, C., & Debbah, M. (2019). Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In 2019 IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC).

  19. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., et al. (2020). Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access, 8, 45913–45923.

    Article  Google Scholar 

  20. Manglayev, T., Kizilirmak, R. C., & Kho, Y. H. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400.

    Article  Google Scholar 

  21. Siva, B., & Reddy, K. (2021). Experimental validation of non-orthogonal multiple access (NOMA) technique using software defined radio. Wireless Personal Communications, 116, 3599–3612.

    Article  Google Scholar 

  22. Reddy, B. S. K., Mannem, K., & Jamal, K. (2021). Software defined radio based non-orthogonal multiple access (NOMA) systems. Wireless Personal Communications, 119, 1251–1273.

    Article  Google Scholar 

  23. Panda, S. (2020). Joint user patterning and power control optimization of MIMO-NOMA systems. Wireless Personal Communications, 112, 2557–2573.

    Article  Google Scholar 

  24. Narasimha Nayak, V., & Gurrala, K. K. (2021). A novel resource allocation for SWIPT-NOMA enabled AF relay based cooperative network. Wireless Personal Communications, 118, 2699–2716.

    Article  Google Scholar 

  25. Chen, Y.-H., Chen, Y.-F., & Tseng, S.-M. (2021). System performance analysis in cognitive radio-aided NOMA network: An application to vehicle-to-everything communications. Wireless Personal Communications, 3(120), 1975–2000.

    Google Scholar 

  26. Abed, D., & Medjouri, A. (2021). CS-based near-optimal MUD for uplink grant-free NOMA. Wireless Personal Communications, 118, 3585–3594.

    Article  Google Scholar 

  27. Thirunavukkarasu, R., & Balasubramanian, R. (2021). An efficient code domain NOMA scheme with enhanced spectral and energy efficiency for networks beyond 5G. Wireless Personal Communications, 6(120), 353–377.

    Article  Google Scholar 

  28. Le, T. A., & Kong, H. Y. (2019). Evaluating the performance of cooperative NOMA with energy harvesting under physical layer security. Wireless Personal Communications, 108, 1037–1054.

    Article  Google Scholar 

  29. Narasimha Nayak, V., & Gurrala, K. K. (2021). Enhanced physical layer security for cooperative NOMA network with hybrid-decode-amplify-forward relaying via power allocation assisted control jamming. Wireless Personal Communications, 3, 1–18.

    Google Scholar 

  30. Do, D.-T., & Van Nguyen, M.-S. (2021). New look on device to device NOMA systems: With and without wireless power transfer modes. Wireless Personal Communications, 116, 2485–2500.

    Article  Google Scholar 

  31. Huang, T.-J. (2020). Theoretical analysis of NOMA within massive MIMO systems. Wireless Personal Communications, 112, 777–783.

    Article  Google Scholar 

  32. Tseng, S.-M., Chen, Y.-F., & Liu, K.-C. (2019). Cross layer power control and user pairing for DL multi-antenna NOMA. Wireless Personal Communications, 109, 1541–1556.

    Article  Google Scholar 

  33. Mondal, S., Roy, S. D., & Kundu, S. (2021). Partial relay selection in energy harvesting based NOMA network with imperfect CSI. Wireless Personal Communications, 2, 1–17.

    Google Scholar 

  34. Le, T. A., & Kong, H. Y. (2021). Effects of hardware impairment on the cooperative NOMA EH relaying network over Nakagami-m fading channels. Wireless Personal Communications, 116, 3577–3597.

    Article  Google Scholar 

  35. Najafi, M., Jamali, V., Diamantoulakis, P. D., Karagiannidis, G. K., & Schober, R. (2018). Non-orthogonal multiple access for FSO backhauling. Barcelona: IEEE WCNC.

    Book  Google Scholar 

  36. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  37. Proakis, J. (2007). Digital communications. Mac Graw-Hill.

    MATH  Google Scholar 

Download references

Funding

This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The entire paper is the contribution of Prof. Faisal Alanazi.

Corresponding author

Correspondence to Faisal Alanazi.

Ethics declarations

Conflicts of interest

The author states that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: PDF and CDF of X

Let \(Z=[\sum _{p\in I_i}a_pc_p]^2|f|^2\) be the product of two r.v. \(|f|^2\) that follows a central chisquare distribution of two degrees of freedom and \([\sum _{p\in I_i}a_pc_p]^2\) a non-central chisquare distribution with one degree of freedom. We have \(X=\frac{\mu \alpha E_N}{1-\alpha }Z\). We will compute the PDF and CDF of Z and deduce that of X.

We use the Mellin transform of PDF p(x) defined as

$$\begin{aligned} M(p(x))=\int _0^{+\infty }x^{s-1}p(x)dx=M(s). \end{aligned}$$
(29)

The inverse Mellin transformation is defined as

$$\begin{aligned} p(x)=M^{-1}(M(s))=\frac{1}{2\pi j}\int _{e-j\infty }^{e+j\infty }x^{-s}g(s)ds. \end{aligned}$$
(30)

We assume that \(|f|^2\) and \([\sum _{p\in I_i}a_pc_p]^2\) are independent r.v.. Therefore, the Mellin transform of PDF of Z is the product of Mellin transforms of PDF of \(|f|^2\) and \([\sum _{p\in I_i}a_pc_p]^2\).

Let \(p_1(x)\) be the PDF of \(|f|^2\)

$$\begin{aligned} p_1(x)=\frac{1}{\zeta }e^{-\frac{x}{\zeta }} \end{aligned}$$
(31)

where \(\zeta =E(|f|^2)=\frac{1}{d_1^{\alpha }}\).

The Mellin transform of \(p_1(x)\) is

$$\begin{aligned} M(p_1(x))=M_1(s)=\zeta ^{s-1}\Gamma (s), \end{aligned}$$
(32)

where \(\Gamma (s)\) is the Gamma function.

The PDF of \([\sum _{p\in I_i}a_pc_p]^2\) is written as [37]

$$\begin{aligned} p_2(y)=0.5(\frac{y}{\delta ^2})^{-0.25}e^{-0.5(y+\delta ^2)}I_{-0.5}(\delta \sqrt{y}) \end{aligned}$$
(33)

where \(\delta ^2=\frac{m^2}{\sigma ^2}\) is the non centrality parameter and \(I_n(y)\) is the first kind modified Bessel function with n-th order.

We deduce

$$\begin{aligned} M(p_2(y))=0.5e^{-\frac{\delta ^2}{2}}\sqrt{\delta }\int _0^{+\infty }y^{s-\frac{5}{4}}e^{-\frac{y}{2}}I_{-0.5}(\delta \sqrt{y})dy. \end{aligned}$$
(34)

We use the power series expansion of \(I_n(y)\):

$$\begin{aligned} I_n(y)=\sum _{q=0}^{+\infty }\frac{y^{2q+n}}{2^{2q+n}q!\Gamma (q+n+1)} \end{aligned}$$
(35)

We deduce

$$\begin{aligned}&M(p_2(y))=0.5e^{-\frac{\delta ^2}{2}}\sqrt{\delta }\sum _{q=0}^{+\infty }\frac{\delta ^{2q-0.5}}{2^{2q-0.5}q!\Gamma (q+0.5)} \nonumber \\&\quad \int _0^{+\infty }y^{s+q-\frac{3}{2}}e^{-\frac{y}{2}}dy. \end{aligned}$$
(36)

We have

$$\begin{aligned} \int _0^{+\infty }e^{-0.5y}y^{s+q-1.5}dy=\Gamma (s+q-0.5)2^{s+q-0.5}. \end{aligned}$$
(37)

Therefore, we obtain

$$\begin{aligned} M_2(s)=M(p_2(y))=e^{-\frac{\delta ^2}{2}}\sum _{q=0}^{+\infty }\frac{\delta ^{2q}}{q!\Gamma (q+0.5)}\Gamma (s+q-0.5)2^{s-q-1}. \end{aligned}$$
(38)

The PDF of Z can be obtained by inverse Mellin transformation

$$\begin{aligned} p_Z(x)=M^{-1}(M_1(s)M_2(s))=\frac{1}{2\pi j}\int _{e-j\infty }^{e+j\infty }x^{-s}M_1(s)M_2(s)ds. \end{aligned}$$
(39)

Using (32) and (38), we have

$$\begin{aligned}&p_Z(x)=\frac{1}{2\pi j}e^{-\frac{\delta ^2}{2}}\sum _{q=0}^{+\infty }\frac{\delta ^{2q}}{q!\Gamma (q+0.5)} \nonumber \\&\quad \int _{e-j\infty }^{e+j\infty }x^{-s}\Gamma (s+q-0.5)2^{s-m-1}\zeta ^{s-1}\Gamma (s)ds. \end{aligned}$$
(40)

Let \(0.5s'=s+\frac{q}{2}-0.25\), we deduce

$$\begin{aligned}&p_Z(x)=\frac{1}{2\pi j}e^{-\frac{\delta ^2}{2}}\sum _{q=0}^{+\infty }\frac{\delta ^{2q}}{q!\Gamma (q+0.5)} \nonumber \\&\quad \int _{e-j\infty }^{e+j\infty }x^{-0.5s'+0.5m-0.25}\Gamma (0.5s'+0.5q-0.25)2^{0.5s'-\frac{3}{2}q-\frac{7}{4}} \nonumber \\&\quad \times \zeta ^{0.5s'-0.5m-0.75}\Gamma (0.5s'-0.5q+0.25)ds'. \end{aligned}$$
(41)

We use

$$\begin{aligned} M^{-1}(\Gamma (0.5s-0.5n)\Gamma (0.5s+0.5n)2^{s-2}a^{-s})=K_n(ax), \end{aligned}$$
(42)

where \(K_n(x)\) is the n-th order modified Bessel function of second kind.

Using (41) and (42), we obtain the PDF of X

$$\begin{aligned} p_Z(x)=\frac{e^{-0.5\delta ^2}}{\zeta }\sum _{q=0}^{+\infty }\frac{\delta ^{2q}2^{-1.5q+0.25}}{q!\Gamma (q+0.5)}K_{q-0.5}(\sqrt{\frac{2x}{\zeta }})(\frac{x}{\zeta })^{0.5q-0.25} \end{aligned}$$
(43)

Using (10), we obtain the CDF of Z:

$$\begin{aligned} P_Z(x)=e^{-0.5\delta ^2}\sum _{q=0}^{+\infty }\frac{\delta ^{2q} 2^{-q}}{q!\Gamma (q+0.5)}G_{1,3}^{2,1}\left( \frac{x}{2\zeta }|\begin{array}{ccc} 1 &{} &{} \\ q+0.5, &{} 1, &{} 0 \end{array} \right) \end{aligned}$$
(44)

The CDF of X is given in (11) and deduced from that of Z using \(P_X(x)=P_Z(\frac{x(1-\alpha )}{\mu \alpha E_N})\). The PDF of X is given in (8) and obtained from the PDF of Z \(p_X(x)=\frac{1-\alpha }{\mu \alpha E_N}p_Z(\frac{x(1-\alpha )}{\mu \alpha E_N})\).

Appendix B: PDF and CDF of Y

It is assumed that \([\sum _{p\in I_i}a_pc_p]^2\) and \([\sum _{p=1}^{R^1}e_pz_p]^2\) are independent r.v. so that the Mellin transform of PDF of \(W=[\sum _{p\in I_i}a_pc_p]^2[\sum _{p=1}^{R^1}e_pz_p]^2\) is the product of the Mellin transforms of PDF of \([\sum _{p=1}^{R^1}e_pz_p]^2\) and \([\sum _{p\in I_i}a_pc_p]^2\). The PDF of \([\sum _{p\in I_i}a_pc_p]^2\) is given in (33). The PDF of \([\sum _{p=1}^{R^1}e_pz_p]^2\) is written similarly

$$\begin{aligned} p_3(y)=0.5(\frac{y}{\delta _2^2})^{-0.25}e^{-0.5(y+\delta _2^2)}I_{-0.5}(\delta _2 \sqrt{y}) \end{aligned}$$
(45)

where \(\delta _2^2=\frac{m_2^2}{\sigma _2^2}\) is the non centrality parameter.

The Mellin transform of \(p_3(y)\) is written similarly to (38)

$$\begin{aligned} M_3(s)=M(p_3(y))=e^{-\frac{\delta _2^2}{2}}\sum _{q=0}^{+\infty }\frac{\delta _2^{2q}}{q!\Gamma (q+0.5)}\Gamma (s+q-0.5)2^{s-q-1}. \end{aligned}$$
(46)

We deduce

$$\begin{aligned}&M_2(s)M_3(s)=e^{-\frac{\delta _2^2+\delta ^2}{2}}\sum _{q=0}^{+\infty }\sum _{p=0}^{+\infty }\frac{\delta _2^{2p}\delta ^{2q}}{q!p!\Gamma (q+0.5)\Gamma (p+0.5)} \nonumber \\&\qquad \qquad \times \Gamma (s+p-0.5)\Gamma (s+q-0.5)2^{2s-q-p-2}. \end{aligned}$$
(47)

The PDF of W is obtained by inverse Mellin transform of \(M_2(s)M_3(s)\) as

$$\begin{aligned}&p_W(z)=\frac{1}{2\pi j}e^{\frac{-\delta ^2-\delta _2^2}{2}}\sum _{q=0}^{+\infty }\sum _{p=0}^{+\infty }\frac{\delta _2^{2p}\delta ^{2q}}{q!p!\Gamma (q+0.5)\Gamma (p+0.5)} \nonumber \\&\qquad \qquad \times \int _{e-j\infty }^{e+j\infty }z^{-s}\Gamma (s+q-0.5)\Gamma (s+p-0.5)2^{2s-q-p-2}ds. \end{aligned}$$
(48)

Let \(s'=2s+p+q-1\), we deduce

$$\begin{aligned}&p_W(z)=\frac{1}{2\pi j}e^{\frac{-\delta ^2-\delta _2^2}{2}}\sum _{q=0}^{+\infty }\sum _{p=0}^{+\infty }\frac{\delta _2^{2p}\delta ^{2q}}{q!p!\Gamma (q+0.5)\Gamma (p+0.5)} \nonumber \\&\qquad \times \int _{e'-j\infty }^{e'+j\infty }z^{-0.5s'+0.5p+0.5q-0.5}\Gamma (0.5s'+0.5q-0.5p) \nonumber \\&\qquad \times \Gamma (0.5s'+0.5p-0.5q)2^{s'-2q-2p-2}ds'. \end{aligned}$$
(49)

Using (42), we obtain the PDF of W as

$$\begin{aligned} p_W(z)=e^{\frac{-\delta ^2-\delta _2^2}{2}}\sum _{q=0}^{+\infty }\sum _{p=0}^{+\infty }\frac{\delta _2^{2p}\delta ^{2q}K_{p-q}(\sqrt{z})2^{-2q-2p}z^{\frac{p+q-1}{2}}}{q!p!\Gamma (q+0.5)\Gamma (p+0.5)} \end{aligned}$$
(50)

We use (10) to write the CDF of Z as

$$\begin{aligned}&P_W(z)=e^{\frac{-\delta ^2-\delta _2^2}{2}}\sum _{q=0}^{+\infty }\sum _{p=0}^{+\infty }\frac{2^{-q-p}\delta _2^{2p}\delta ^{2q}}{q!p!\Gamma (q+0.5)\Gamma (p+0.5)} \nonumber \\&\qquad \quad \times G_{1,3}^{2,1}\left( \frac{z}{4}|\begin{array}{ccc} 1 &{} &{} \\ p+0.5, &{} q+0.5, &{} 0 \end{array} \right) \end{aligned}$$
(51)

The CDF of Y is given in (27) and deduced from that of W using \(P_Y(x)=P_W(\frac{x(1-\alpha )}{\mu \alpha E_N})\). The PDF of Y is given in (26) and obtained from the PDF of W \(p_Y(x)=\frac{1-\alpha }{\mu \alpha E_N}p_W(\frac{x(1-\alpha )}{\mu \alpha E_N})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, F. Non Orthogonal Multiple Access with Energy Harvesting Using Reconfigurable Intelligent Surfaces for Rayleigh Channels. Wireless Pers Commun 122, 2161–2181 (2022). https://doi.org/10.1007/s11277-021-08986-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08986-z

Keywords

Navigation