Skip to main content

Advertisement

Log in

A Survey on WSN Issues with its Heuristics and Meta-Heuristics Solutions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A wireless sensor networks (WSN’s) has stimulated significant research work among the researchers in monitoring and tracking tasks. It’s a quite challenging task that needs to cope up with various conflicting issues such as energy efficiency, network lifetime, connectivity, coverage, etc. in WSN’s for designing various applications. This paper explores the recent work and efforts done in addressing the various issues in WSN’s. This paper focused on basic concepts regarding the WSN’s and discusses meta-heuristics and heuristics algorithms for solving these issues with recent investigations. Various optimization algorithms in the context of WSN, routing algorithms, and clustering algorithms were discussed with details of earlier work done. This paper delivers various Multi-Objective Optimization approaches deeply for solving issues and summarizes the recent research work and studies. It provides researchers an understanding of the various issues, trade-offs between them, and meta-heuristics and heuristics approach for solving these issues. A glimpse of open research challenges has also been provided which will be helpful for researchers. This paper also gives an insight into various issues, open challenges that still exist in WSN’s with their heuristics and meta-heuristics solutions and also focuses on various conflicting issues as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Communications Surveys and Tutorials, 19(1), 550–586.

    Article  Google Scholar 

  2. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

    Article  MathSciNet  MATH  Google Scholar 

  3. Tharmarasa, R., Kirubarajan, T., & Peng, J. (2005, September). Dynamic sensor management for distributed tracking. In Signal and Data Processing of Small Targets 2005 (Vol. 5913, p. 59130Y). International Society for Optics and Photonics.

  4. Wang, X. J., Zhang, C. Y., Gao, L., & Li, P. G. (2008). A survey and future trend of study on multi-objective scheduling. In 2008 Fourth International Conference on Natural Computation (Vol. 6, pp. 382–391). IEEE.

  5. Marks, M. (2010). A survey of multi-objective deployment in wireless sensor networks. Journal of Telecommunications and Information Technology, 36–41.

  6. Gao, T., Song, J. Y., Zou, J. Y., Ding, J. H., Wang, D. Q., & Jin, R. C. (2016). An overview of performance trade-off mechanisms in routing protocol for green wireless sensor networks. Wireless Networks, 22(1), 135–157.

    Article  Google Scholar 

  7. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: Multi-objective paradigm. Sensors, 15(7), 17572–17620.

    Article  Google Scholar 

  8. Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications and solution approaches. Computer Networks, 99, 134–161.

    Article  Google Scholar 

  9. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.

    Article  Google Scholar 

  10. Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1), 1–48.

    Article  Google Scholar 

  11. Iannacci, J. (2019). Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT)–A review with focus on mechanical vibrations. Journal of King Saud University-Science, 31(1), 66–74.

    Article  Google Scholar 

  12. Arampatzis, T., Lygeros, J., & Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005. (pp. 719–724). IEEE.

  13. Spachos, P., & Hatzinakos, D. (2015). Real-time indoor carbon dioxide monitoring through cognitive wireless sensor networks. IEEE Sensors Journal, 16(2), 506–514.

    Article  Google Scholar 

  14. Milenković, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(13–14), 2521–2533.

    Article  Google Scholar 

  15. Ketu, S., & Mishra, P. K. (2021). Cloud, Fog and Mist Computing in IoT: An Indication of Emerging Opportunities. IETE Technical Review. https://doi.org/10.1080/02564602.2021.1898482

    Article  Google Scholar 

  16. Chinrungrueng, J., Sununtachaikul, U., & Triamlumlerd, S. (2006). A vehicular monitoring system with power-efficient wireless sensor networks. In 2006 6th International Conference on ITS Telecommunications (pp. 951–954). IEEE.

  17. Butun, I., Morgera, S. D., & Sankar, R. (2013). A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(1), 266–282.

    Article  Google Scholar 

  18. Wu, F. J., Kao, Y. F., & Tseng, Y. C. (2011). From wireless sensor networks towards cyber physical systems. Pervasive and Mobile Computing, 7(4), 397–413.

    Article  Google Scholar 

  19. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  20. Wang, D., Xie, B., & Agrawal, D. P. (2008). Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing, 7(12), 1444–1458.

    Article  Google Scholar 

  21. Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. J. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27.

    Article  Google Scholar 

  22. Bai, X., Yun, Z., Xuan, D., Chen, B., & Zhao, W. (2011). Notice of Violation of IEEE Publication Principles: Optimal multiple-coverage of sensor networks. In 2011 Proceedings IEEE INFOCOM (pp. 2498–2506). IEEE.

  23. Konstantinidis, A., Yang, K., Zhang, Q., & Zeinalipour-Yazti, D. (2010). A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Computer Networks, 54(6), 960–976.

    Article  MATH  Google Scholar 

  24. Krishnamachari, B., & Ordónez, F. (2003). Analysis of energy-efficient, fair routing in wireless sensor networks through non-linear optimization. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484) (Vol. 5, pp. 2844–2848). IEEE.

  25. Syarif, A., Benyahia, I., Abouaissa, A., Idoumghar, L., Sari, R. F., & Lorenz, P. (2014). Evolutionary multi-objective based approach for wireless sensor network deployment. In 2014 IEEE International Conference on Communications (ICC) (pp. 1831–1836). IEEE.

  26. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003, November). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 28–39).

  27. Xing, G., Wang, X., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2005). Integrated coverage and connectivity configuration for energy conservation in sensor networks. ACM Transactions on Sensor Networks (TOSN), 1(1), 36–72.

    Article  Google Scholar 

  28. Ammari, H. M., & Das, S. K. (2006). Coverage, connectivity, and fault tolerance measures of wireless sensor networks. In Symposium on Self-Stabilizing Systems (pp. 35–49). Springer, Berlin, Heidelberg.

  29. Ammari, H. M., & Das, S. K. (2008). Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 57(10), 1423–1434.

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y., Song, Y. Q., Zhu, Y. H., & Schott, R. (2010). Deploying wireless sensors for differentiated coverage and probabilistic connectivity. In 2010 IEEE Wireless Communication and Networking Conference (pp. 1–6). IEEE.

  31. Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4), 609–619.

    Article  Google Scholar 

  32. Rajagopalan, R., Mohan, C. K., Varshney, P., & Mehrotra, K. (2005). Multi-objective mobile agent routing in wireless sensor networks. In 2005 IEEE Congress on Evolutionary Computation (Vol. 2, pp. 1730–1737). IEEE.

  33. Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.

    Article  Google Scholar 

  34. Ammari, H. M., & Das, S. K. (2005). Trade-off between energy savings and source-to-sink delay in data dissemination for wireless sensor networks. In Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems (pp. 126–133).

  35. Ammari, H. M., & Das, S. K. (2008). A trade-off between energy and delay in data dissemination for wireless sensor networks using transmission range slicing. Computer Communications, 31(9), 1687–1704.

    Article  Google Scholar 

  36. Zhang, J., Yan, T., & Son, S. H. (2006). Deployment strategies for differentiated detection in wireless sensor networks. In 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (Vol. 1, pp. 316–325). IEEE.

  37. Zou, Y., & Chakrabarty, K. (2004). Uncertainty-aware and coverage-oriented deployment for sensor networks. Journal of Parallel and Distributed Computing, 64(7), 788–798.

    Article  Google Scholar 

  38. Zou, Y., & Chakrabarty, K. (2004). Sensor deployment and target localization in distributed sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 3(1), 61–91.

    Article  Google Scholar 

  39. Bhuiyan, M. Z. A., Wang, G., Cao, J., & Wu, J. (2013). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.

    Article  MathSciNet  MATH  Google Scholar 

  40. Patra, R. R., & Patra, P. K. (2011). Analysis of k-coverage in wireless sensor networks. International Journal of Advanced Computer Science and Applications, 2(9), 91–96.

    Google Scholar 

  41. Zhu, J., Hung, K. L., Bensaou, B., & Nait-Abdesselam, F. (2008). Rate-lifetime tradeoff for reliable communication in wireless sensor networks. Computer Networks, 52(1), 25–43.

    Article  MATH  Google Scholar 

  42. Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.

    Article  Google Scholar 

  43. Ammari, Y. M. (2009). Challenges and opportunities of connected k-covered wireless sensor networks. Studies in Computational Intelligence. Springer.

    MATH  Google Scholar 

  44. Ammari, H. M. (2013). On the energy-delay trade-off in geographic forwarding in always-on wireless sensor networks: A multi-objective optimization problem. Computer Networks, 57(9), 1913–1935.

    Article  Google Scholar 

  45. Adnan, M., Razzaque, M. A., Ahmed, I., & Isnin, I. F. (2014). Bio-mimic optimization strategies in wireless sensor networks: A survey. Sensors, 14(1), 299–345.

    Article  Google Scholar 

  46. Jabbar, S., Iram, R., Minhas, A. A., Shafi, I., Khalid, S., & Ahmad, M. (2013). Intelligent optimization of wireless sensor networks through bio-inspired computing: survey and future directions. International Journal of Distributed Sensor Networks, 9(2), 421084.

    Article  Google Scholar 

  47. Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A Matematicas, 102(2), 251–318.

    Article  MathSciNet  MATH  Google Scholar 

  48. Saaty, T. L. (1990). Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS Publications.

    Google Scholar 

  49. Ray, A., Sarkar, B., & Sanyal, S. (2009). The TOC-based algorithm for solving multiple constraint resources. IEEE Transactions on Engineering Management, 57(2), 301–309.

    Article  Google Scholar 

  50. Wang, J. Q., Zhang, Z. T., Chen, J., Guo, Y. Z., Wang, S., Sun, S. D., & Huang, G. Q. (2013). The TOC-based algorithm for solving multiple constraint resources: A re-examination. IEEE Transactions on Engineering Management, 61(1), 138–146.

    Article  Google Scholar 

  51. Li, C., Anavatti, S. G., & Ray, T. (2013). Analytical hierarchy process using fuzzy inference technique for real-time route guidance system. IEEE Transactions on Intelligent Transportation Systems, 15(1), 84–93.

    Article  Google Scholar 

  52. Min, W., & Shining, L. (2010). An energy-efficient load-balanceable multipath routing algorithm based on AHP for wireless sensor networks. In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (Vol. 2, pp. 251–256). IEEE.

  53. Gao, T., Jin, R., Qin, J., & Wang, L. (2010). A novel node-disjoint multipath routing protocol for wireless multimedia sensor networks. In 2010 2nd International Conference on Signal Processing Systems (Vol. 1, pp. V1–790). IEEE.

  54. Eichfelder, G. (2009). Scalarizations for adaptively solving multi-objective optimization problems. Computational Optimization and Applications, 44(2), 249.

    Article  MathSciNet  MATH  Google Scholar 

  55. Özcan, U., & Toklu, B. (2009). Multiple-criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models. Computers and Operations Research, 36(6), 1955–1965.

    Article  MATH  Google Scholar 

  56. Tang, Y. C., & Chang, C. T. (2012). Multicriteria decision-making based on goal programming and fuzzy analytic hierarchy process: An application to capital budgeting problem. Knowledge-Based Systems, 26, 288–293.

    Article  Google Scholar 

  57. Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153(3), 675–686.

    Article  MathSciNet  MATH  Google Scholar 

  58. Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In Multiple criteria decision making theory and application (pp. 468–486). Springer.

  59. Garcia-Sanchez, A. J., Garcia-Sanchez, F., Rodenas-Herraiz, D., & Garcia-Haro, J. (2012). On the optimization of wireless multimedia sensor networks: A goal programming approach. Sensors, 12(9), 12634–12660.

    Article  Google Scholar 

  60. Ustun, O. (2012). Multi-choice goal programming formulation based on the conic scalarizing function. Applied Mathematical Modelling, 36(3), 974–988.

    Article  MathSciNet  MATH  Google Scholar 

  61. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  62. Ripon, K. S. N., Tsang, C. H., & Kwong, S. (2006). Multi-objective evolutionary job-shop scheduling using jumping genes genetic algorithm. In The 2006 IEEE International Joint Conference on Neural Network Proceedings (pp. 3100–3107). IEEE.

  63. Zhang, Z., Long, K., Wang, J., & Dressler, F. (2013). On swarm intelligence inspired self-organized networking: Its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys and Tutorials, 16(1), 513–537.

    Article  Google Scholar 

  64. Pal, S. K., Bandyopadhyay, S., & Murthy, C. A. (1998). Genetic algorithms for generation of class boundaries. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 28(6), 816–828.

    Article  Google Scholar 

  65. Jourdan, D. B., & de Weck, O. L. (2004). Layout optimization for a wireless sensor network using a multi-objective genetic algorithm. In 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No. 04CH37514) (Vol. 5, pp. 2466–2470). IEEE.

  66. Fonseca, C. M., & Fleming, P. J. (1993) Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization. In Icga (Vol. 93, No. July, pp. 416–423).

  67. Jourdan, D. B., & de Weck, O. L. (2004). Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility. In Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III (Vol. 5403, pp. 565–575). International Society for Optics and Photonics.

  68. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.

    Article  Google Scholar 

  69. Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence (pp. 82–87). Ieee.

  70. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  71. Das, S., & Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  72. Yousefi, M., Yousefi, M., & Darus, A. N. (2012). A modified imperialist competitive algorithm for constrained optimization of plate-fin heat exchangers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(8), 1050–1059.

    Google Scholar 

  73. Mohammadi-Ivatloo, B., Rabiee, A., Soroudi, A., & Ehsan, M. (2012). Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch. Energy, 44(1), 228–240.

    Article  Google Scholar 

  74. Enayatifar, R., Yousefi, M., Abdullah, A. H., & Darus, A. N. (2014). A novel sensor deployment approach using multi-objective imperialist competitive algorithm in wireless sensor networks. Arabian Journal for Science and Engineering, 39(6), 4637–4650.

    Article  Google Scholar 

  75. Wei, X., & Zhi, L. (2010). The multi-objective routing optimization of WSNs based on an improved ant colony algorithm. In 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (pp. 1–4). IEEE.

  76. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    Article  MathSciNet  MATH  Google Scholar 

  77. Parsopoulos, K. E., & Vrahatis, M. N. (2002, March). Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied Computing (pp. 603–607).

  78. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477). IEEE.

  79. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39.

    Article  Google Scholar 

  80. Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., & Harley, R. G. (2008). Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.

    Article  Google Scholar 

  81. Rani, K. S. S., & Devarajan, N. (2012). Multiobjective sensor node deployment in wireless sensor networks. International Journal of Engineering Science and Technology, 4(4), 1262–1266.

    Google Scholar 

  82. Barbancho, J., León, C., Molina, F. J., & Barbancho, A. (2007). Using artificial intelligence in routing schemes for wireless networks. Computer Communications, 30(14–15), 2802–2811.

    Article  Google Scholar 

  83. Oldewurtel, F., & Mahonen, P. (2006). Neural wireless sensor networks. In 2006 International Conference on Systems and Networks Communications (ICSNC'06) (pp. 28–28). IEEE.

  84. Dong, S., Agrawal, P., & Sivalingam, K. (2007). Reinforcement learning based geographic routing protocol for UWB wireless sensor network. In IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference (pp. 652–656). IEEE.

  85. Rovcanin, M., De Poorter, E., Moerman, I., & Demeester, P. (2014). A reinforcement learning based solution for cognitive network cooperation between co-located, heterogeneous wireless sensor networks. Ad Hoc Networks, 17, 98–113.

    Article  Google Scholar 

  86. Suryadevara, N. K., Mukhopadhyay, S. C., Kelly, S. D. T., & Gill, S. P. S. (2014). WSN-based smart sensors and actuator for power management in intelligent buildings. IEEE/ASME Transactions on Mechatronics, 20(2), 564–571.

    Article  Google Scholar 

  87. Wang, K., Wang, Y., Sun, Y., Guo, S., & Wu, J. (2016). Green industrial Internet of Things architecture: An energy-efficient perspective. IEEE Communications Magazine, 54(12), 48–54.

    Article  Google Scholar 

  88. Wang, K., Shao, Y., Shu, L., Zhu, C., & Zhang, Y. (2016). Mobile big data fault-tolerant processing for ehealth networks. IEEE Network, 30(1), 36–42.

    Article  Google Scholar 

  89. Nayak, P., & Devulapalli, A. (2015). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.

    Article  Google Scholar 

  90. Hedetniemi, S. M., Hedetniemi, S. T., & Liestman, A. L. (1988). A survey of gossiping and broadcasting in communication networks. Networks, 18(4), 319–349.

    Article  MathSciNet  MATH  Google Scholar 

  91. Kulik, J., Heinzelman, W., & Balakrishnan, H. (2002). Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Networks, 8(2), 169–185.

    Article  MATH  Google Scholar 

  92. Khanna, G., Bagchi, S., & Wu, Y. S. (2004, June). Fault tolerant energy aware data dissemination protocol in sensor networks. In International Conference on Dependable Systems and Networks, 2004 (pp. 795–804). IEEE.

  93. Singh, S. K., Kumar, P., & Singh, J. P. (2017). A survey on successors of LEACH protocol. IEEE Access, 5, 4298–4328.

    Article  Google Scholar 

  94. Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers and Electrical Engineering, 38(3), 662–671.

    Article  Google Scholar 

  95. Manzoor, B., Javaid, N., Rehman, O., Akbar, M., Nadeem, Q., Iqbal, A., & Ishfaq, M. (2013). Q-LEACH: A new routing protocol for WSNs. Procedia Computer Science, 19, 926–931.

    Article  Google Scholar 

  96. Bara’a, A. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12(7), 1950–1957.

    Article  Google Scholar 

  97. Barcelo, M., Correa, A., Vicario, J. L., & Morell, A. (2016). Cooperative interaction among multiple RPL instances in wireless sensor networks. Computer Communications, 81, 61–71.

    Article  Google Scholar 

  98. Srivastava, J. R., & Sudarshan, T. S. B. (2015). A genetic fuzzy system based optimized zone based energy efficient routing protocol for mobile sensor networks (OZEEP). Applied Soft Computing, 37, 863–886.

    Article  Google Scholar 

  99. Chen, C. W., & Weng, C. C. (2012). A power efficiency routing and maintenance protocol in wireless multi-hop networks. Journal of Systems and Software, 85(1), 62–76.

    Article  Google Scholar 

  100. Zhang, D. G., Song, X. D., Wang, X., & Ma, Y. Y. (2015). Extended AODV routing method based on distributed minimum transmission (DMT) for WSN. AEU-International Journal of Electronics and Communications, 69(1), 371–381.

    Google Scholar 

  101. Hayes, T., & Ali, F. H. (2015). Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks. Pervasive and Mobile Computing, 21, 47–61.

    Article  Google Scholar 

  102. Singh, S., Chand, S., & Kumar, B. (2016). Energy efficient clustering protocol using fuzzy logic for heterogeneous WSNs. Wireless Personal Communications, 86(2), 451–475.

    Article  Google Scholar 

  103. Kumar, H., Arora, H., & Singla, R. K. (2013). Energy-Aware Fisheye Routing (EA-FSR) algorithm for wireless mobile sensor networks. Egyptian Informatics Journal, 14(3), 235–238.

    Article  Google Scholar 

  104. Wang, K., Gao, H., Xu, X., Jiang, J., & Yue, D. (2015). An energy-efficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks. IEEE Sensors Journal, 16(11), 4051–4062.

    Article  Google Scholar 

  105. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  106. Liu, M., Xu, S., & Sun, S. (2012). An agent-assisted QoS-based routing algorithm for wireless sensor networks. Journal of Network and Computer Applications, 35(1), 29–36.

    Article  Google Scholar 

  107. Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005–2020.

    Article  Google Scholar 

  108. Hou, T. C., & Li, V. (1986). Transmission range control in multihop packet radio networks. IEEE Transactions on Communications, 34(1), 38–44.

    Article  MathSciNet  Google Scholar 

  109. Takagi, H., & Kleinrock, L. (1984). Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Transactions on Communications, 32(3), 246–257.

    Article  Google Scholar 

  110. Kranakis, E., Singh, H., & Urrutia, J. (1999). Compass routing on geometric networks. In in Proc. 11 th Canadian Conference on Computational Geometry.

  111. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254).

  112. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on Mobile computing and networking (pp. 70–84).

  113. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks.

  114. He, T., Stankovic, J. A., Lu, C., & Abdelzaher, T. (2003). SPEED: A stateless protocol for real-time communication in sensor networks. In 23rd International Conference on Distributed Computing Systems, 2003. Proceedings. (pp. 46–55). IEEE.

  115. Mann, P. S., & Singh, S. (2017). Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. Journal of Network and Computer Applications, 83, 40–52.

    Article  Google Scholar 

  116. Akyildiz, I. F., Vuran, M. C., & Akan, O. B. (2004, March). On exploiting spatial and temporal correlation in wireless sensor networks. In Proceedings of WiOpt (Vol. 4, pp. 71–80).

  117. Rostami, A. S., Badkoobe, M., Mohanna, F., Hosseinabadi, A. A. R., & Sangaiah, A. K. (2018). Survey on clustering in heterogeneous and homogeneous wireless sensor networks. The Journal of Supercomputing, 74(1), 277–323.

    Article  Google Scholar 

  118. Misra, S., Woungang, I., & Misra, S. C. (Eds.). (2009). Guide to wireless sensor networks. Springer Science & Business Media.

    MATH  Google Scholar 

  119. Rajpoot, P., & Dwivedi, P. (2021). MADM based Optimal Nodes Deployment for WSN with Optimal Coverage and Connectivity. In IOP Conference Series: Materials Science and Engineering (Vol. 1020, No. 1, p. 012003). IOP Publishing.

  120. Rajpoot, P., & Dwivedi, P. (2020). Optimized and load balanced clustering for wireless sensor networks to increase the lifetime of WSN using MADM approaches. Wireless Networks, 26(1), 215–251.

    Article  Google Scholar 

  121. Rajpoot, P., & Dwivedi, P. (2019). Multiple parameter based energy balanced and optimized clustering for WSN to enhance the Lifetime using MADM Approaches. Wireless Personal Communications, 106(2), 829–877.

    Article  Google Scholar 

  122. Zhang, Y., Yang, L. T., & Chen, J. (2010). RFID and Sensor Networks, auerbach publication. International Standard Book, 978–1, 4200–7777.

    Google Scholar 

  123. Loscri, V., Morabito, G., & Marano, S. (2005). A twFo-levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE vehicular technology conference (Vol. 62, No. 3, p. 1809). IEEE; 1999.

  124. Rajpoot, P., Singh, S. H., Verma, R., Dubey, K., Pandey, S. K., & Verma, S. (2020). Multi-factor-based energy-efficient clustering and routing algorithm for WSN. Soft Computing: Theories and Applications (pp. 571–581). Springer.

    Chapter  Google Scholar 

  125. Kumar, D., Aseri, T. C., & Patel, R. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667.

    Article  Google Scholar 

  126. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks (Doctoral dissertation, Massachusetts Institute of Technology).

  127. Wang, W., Wang, Q., Luo, W., Sheng, M., Wu, W., & Hao, L. (2009). Leach-H: An improved routing protocol for collaborative sensing networks. In 2009 International Conference on Wireless Communications and Signal Processing (pp. 1–5). IEEE.

  128. Ren, P., Qian, J., Li, L., Zhao, Z., & Li, X. (2010). Unequal clustering scheme based leach for wireless sensor networks. In 2010 Fourth International Conference on Genetic and Evolutionary Computing (pp. 90–93). IEEE.

  129. Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: a variant of LEACH for WSNs. In 2013 Eighth international conference on broadband and wireless computing, communication and applications (pp. 158–163). IEEE.

  130. Singh, D., & Nayak, S. K. (2015, September). Enhanced modified LEACH (EMODLEACH) protocol for WSN. In 2015 International symposium on advanced computing and communication (ISACC) (pp. 328–333). IEEE.

  131. Liu, J. L., & Ravishankar, C. V. (2011). LEACH-GA: Genetic algorithm-based energy-efficient adaptive clustering protocol for wireless sensor networks. International Journal of Machine Learning and Computing, 1(1), 79.

    Article  Google Scholar 

  132. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  133. Ci, S., Guizani, M., & Sharif, H. (2007). Adaptive clustering in wireless sensor networks by mining sensor energy data. Computer Communications, 30(14–15), 2968–2975.

    Article  Google Scholar 

  134. Gou, H., Yoo, Y., & Zeng, H. (2009). A partition-based LEACH algorithm for wireless sensor networks. In 2009 Ninth IEEE International Conference on Computer and Information Technology (Vol. 2, pp. 40–45). IEEE.

  135. Thiagarajan, R. (2020). Energy consumption and network connectivity based on Novel-LEACH-POS protocol networks. Computer Communications, 149, 90–98.

    Article  Google Scholar 

  136. Nguyen, N. T., Le, T. T., Nguyen, H. H., & Voznak, M. (2021). Energy-efficient clustering multi-hop routing protocol in a UWSN. Sensors, 21(2), 627.

    Article  Google Scholar 

  137. Gupta, D., Rani, S., Ahmed, S. H., Garg, S., Piran, M. J., & Alrashoud, M. (2021). ICN-Based Enhanced Cooperative Caching for Multimedia Streaming in Resource Constrained Vehicular Environment. IEEE Transactions on Intelligent Transportation Systems.

  138. Mishra, P. K., Verma, S. K., & Kumar, A. (2021). NSMTSEP: Neighbor Supported Modified Threshold Sensitive Stable Election Protocol for WSN. Wireless Personal Communications, 1–16.

  139. Moussa, N., Hamidi-Alaoui, Z., & El Alaoui, A. E. B. (2020). ECRP: an energy-aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 1–14.

  140. Vinodhini, R., & Gomathy, C. (2021). Fuzzy Based Unequal Clustering and Context-Aware Routing Based on Glow-Worm Swarm Optimization in Wireless Sensor Networks: Forest Fire Detection. Wireless Personal Communications, 1–22.

  141. Liu, C., Wu, K., Xiao, Y., & Sun, B. (2006). Random coverage with guaranteed connectivity: Joint scheduling for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 17(6), 562–575.

    Article  Google Scholar 

  142. Ok, C. S., Lee, S., Mitra, P., & Kumara, S. (2009). Distributed energy balanced routing for wireless sensor networks. Computers and Industrial Engineering, 57(1), 125–135.

    Article  Google Scholar 

  143. Zhou, H., Wu, Y., Hu, Y., & Xie, G. (2010). A novel stable selection and reliable transmission protocol for clustered heterogeneous wireless sensor networks. Computer Communications, 33(15), 1843–1849.

    Article  Google Scholar 

  144. Dutta, A. K., Elhoseny, M., Dahiya, V., & Shankar, K. (2020). An efficient hierarchical clustering protocol for multihop Internet of vehicles communication. Transactions on Emerging Telecommunications Technologies, 31(5), e3690.

    Article  Google Scholar 

  145. Xu, L., Collier, R., & O’Hare, G. M. (2017). A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249.

    Article  Google Scholar 

  146. Mishra, S. (2018). Financial management and forecasting using business intelligence and big data analytic tools. International Journal of Financial Engineering, 5(02), 1850011.

    Article  MathSciNet  Google Scholar 

  147. Mishra, S., & Triptahi, A. R. (2019). Platforms oriented business and data analytics in digital ecosystem. International Journal of Financial Engineering, 6(04), 1950036.

    Article  Google Scholar 

  148. Mishra, S., & Tripathi, A. R. (2020). IoT platform business model for innovative management systems. International Journal of Financial Engineering (IJFE), 7(03), 1–31.

    Google Scholar 

  149. Srivastava, A., & Mishra, P. K. (2019). State-of-the-art prototypes and future propensity stem on internet of things. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 2672–2683. https://doi.org/10.35940/ijrte.D7291.118419

    Article  Google Scholar 

  150. Ketu, S., & Mishra, P. K. (2021). Enhanced Gaussian process regression-based forecasting model for COVID-19 outbreak and significance of IoT for its detection. Applied Intelligence, 51(3), 1492–1512.

    Article  Google Scholar 

  151. Ketu, S., & Mishra, P. K. (2021). Hybrid classification model for eye state detection using electroencephalogram signals. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-021-09678-x

    Article  Google Scholar 

  152. Ketu, S., & Mishra, P. K. (2020). Performance Analysis of Machine Learning Algorithms for IoT-Based Human Activity Recognition. In Advances in Electrical and Computer Technologies (pp. 579–591). Springer.

  153. Nguyen, L., & Nguyen, H. T. (2020). Mobility based network lifetime in wireless sensor networks: A review. Computer Networks, 174, 107236.

    Article  Google Scholar 

  154. Sheng, J., Tang, Z., Wu, C., Ai, B., & Wang, Y. (2020). Game theory-based multi-objective optimization interference alignment algorithm for HSR 5G heterogeneous ultra-dense network. IEEE Transactions on Vehicular Technology, 69(11), 13371–13382.

    Article  Google Scholar 

  155. Daanoune, I., Abdennaceur, B., & Ballouk, A. (2021). A comprehensive survey on LEACH-based clustering routing protocols in Wireless Sensor Networks. Ad Hoc Networks, 102409.

  156. Selvi, M., Kumar, S. S., Ganapathy, S., Ayyanar, A., Nehemiah, H. K., & Kannan, A. (2020). An energy efficient clustered gravitational and fuzzy based routing algorithm in WSNs. Wireless Personal Communications, 1–30.

  157. Shyjith, M. B., Maheswaran, C. P., & Reshma, V. K. (2020). Optimized and dynamic selection of cluster head using energy efficient routing protocol in WSN. Wireless Personal Communications, 1–23.

  158. Mazinani, A., Mazinani, S. M., & Hasanabadi, S. FSCVG: A Fuzzy Semi-Distributed Clustering Using Virtual Grids in WSN. Wireless Personal Communications, 1–22.

  159. Reddy, D. L., Puttamadappa, C., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in Wireless Sensor Network. Pervasive and Mobile Computing, 71, 101338.

    Article  Google Scholar 

  160. Pakdel, H., & Fotohi, R. (2021). A firefly algorithm for power management in wireless sensor networks (WSNs). The Journal of Supercomputing, 1–22.

  161. Liu, X., Yu, J., Zhang, W., & Tian, H. (2021). Low-energy dynamic clustering scheme for multi-layer wireless sensor networks. Computers and Electrical Engineering, 91, 107093.

    Article  Google Scholar 

  162. Singh, H., & Singh, D. (2021). Hierarchical clustering and routing protocol to ensure scalability and reliability in large-scale wireless sensor networks. The Journal of Supercomputing, 1–19.

  163. Coello, C. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

    Article  Google Scholar 

  164. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–1007.

    Article  Google Scholar 

  165. Kulkarni, R. V., & Venayagamoorthy, G. K. (2010). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 262–267.

    Article  Google Scholar 

  166. Kulkarni, R. V., Förster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 13(1), 68–96.

    Article  Google Scholar 

  167. Deif, D. S., & Gadallah, Y. (2013). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys and Tutorials, 16(2), 834–855.

    Article  Google Scholar 

  168. Choi, W., & Das, S. K. (2005). A novel framework for energy-conserving data gathering in wireless sensor networks. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies. (Vol. 3, pp. 1985–1996). IEEE.

  169. Suto, K., Nishiyama, H., Kato, N., & Huang, C. W. (2015). An energy-efficient and delay-aware wireless computing system for industrial wireless sensor networks. IEEE Access, 3, 1026–1035.

    Article  Google Scholar 

  170. Abo-Zahhad, M., Sabor, N., Sasaki, S., & Ahmed, S. M. (2016). A centralized immune-Voronoi deployment algorithm for coverage maximization and energy conservation in mobile wireless sensor networks. Information Fusion, 30, 36–51.

    Article  Google Scholar 

  171. Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in wsns using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.

    Article  Google Scholar 

  172. Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.

    Article  Google Scholar 

  173. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

    Article  Google Scholar 

  174. Yang, X., & Vaidya, N. H. (2004). A wakeup scheme for sensor networks: Achieving balance between energy saving and end-to-end delay. In Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004. (pp. 19–26). IEEE.

  175. Yu, Y., Krishnamachari, B., & Prasanna, V. K. (2004). Energy-latency tradeoffs for data gathering in wireless sensor networks. In IEEE INFOCOM 2004 (Vol. 1). IEEE.

  176. Yu, Y., & Prasanna, V. K. (2005). Energy-balanced task allocation for collaborative processing in wireless sensor networks. Mobile Networks and Applications, 10(1), 115–131.

    Article  Google Scholar 

  177. Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  178. Borghini, M., Cuomo, F., Melodia, T., Monaco, U., & Ricciato, F. (2005). Optimal data delivery in wireless sensor networks in the energy and latency domains. In First International Conference on Wireless Internet (WICON'05) (pp. 138–145). IEEE.

  179. Huynh, T. T., & Hong, C. S. (2006). An energy* delay efficient multi-hop routing scheme for wireless sensor networks. IEICE Transactions on Information and Systems, 89(5), 1654–1661.

    Article  Google Scholar 

  180. Moscibroda, T., Von Rickenbach, P., & Wattenhofer, R. (2006). Analyzing the energy-latency trade-off during the deployment of sensor networks. In Infocom.

  181. Leow, W. L., Pishro-Nik, H., & Ni, D. (2007). Delay and energy tradeoff in multi-state wireless sensor networks. In IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference (pp. 1028–1032). IEEE.

  182. Mao, J., Wu, Z., & Wu, X. (2007). A TDMA scheduling scheme for many-to-one communications in wireless sensor networks. Computer Communications, 30(4), 863–872.

    Article  Google Scholar 

  183. Minhas, M. R., Gopalakrishnan, S., & Leung, V. C. (2009, June). Multiobjective routing for simultaneously optimizing system lifetime and source-to-sink delay in wireless sensor networks. In 2009 29th IEEE international conference on distributed computing systems workshops (pp. 123–129). IEEE.

  184. Shahraki, A., Rafsanjani, M. K., & Saeid, A. B. (2011). A new approach for energy and delay trade-off intra-clustering routing in WSNs. Computers and Mathematics with Applications, 62(4), 1670–1676.

    Article  MATH  Google Scholar 

  185. Dong, M., Ota, K., Liu, A., & Guo, M. (2015). Joint optimization of lifetime and transport delay under reliability constraint wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225–236.

    Article  Google Scholar 

  186. Nama, H., Chiang, M., & Mandayam, N. (2006, June). Utility-lifetime trade-off in self-regulating wireless sensor networks: A cross-layer design approach. In 2006 IEEE International Conference on Communications (Vol. 8, pp. 3511–3516). IEEE.

  187. Zhu, J., Chen, S., Bensaou, B., & Hung, K. L. (2007). Tradeoff between lifetime and rate allocation in wireless sensor networks: A cross layer approach. In IEEE INFOCOM 2007–26th IEEE International Conference on Computer Communications (pp. 267–275). IEEE.

  188. Chen, J., He, S., Sun, Y., Thulasiraman, P., & Shen, X. S. (2009). Optimal flow control for utility-lifetime tradeoff in wireless sensor networks. Computer Networks, 53(18), 3031–3041.

    Article  MATH  Google Scholar 

  189. He, S., Chen, J., Xu, W., Sun, Y., Thulasiraman, P., & Shen, X. (2010). A stochastic multiobjective optimization framework for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2010, 1–10.

    Article  Google Scholar 

  190. Luo, J., Iyer, A., & Rosenberg, C. (2010). Throughput-lifetime trade-offs in multihop wireless networks under an SINR-based interference model. IEEE Transactions on Mobile Computing, 10(3), 419–433.

    Article  Google Scholar 

  191. Xie, D., Wei, W., Wang, Y., & Zhu, H. (2013). Tradeoff between throughput and energy consumption in multirate wireless sensor networks. IEEE Sensors Journal, 13(10), 3667–3676.

    Article  Google Scholar 

  192. Liao, S., & Zhang, Q. (2014). A multiutility framework with application for studying tradeoff between utility and lifetime in wireless sensor networks. IEEE Transactions on Vehicular Technology, 64(10), 4701–4711.

    Article  Google Scholar 

  193. Molina, G., Alba, E., & Talbi, E. G. (2008). Optimal sensor network layout using multi-objective metaheuristics. Journal of Universal Computer Science, 14(15), 2549–2565.

    Google Scholar 

  194. Jia, J., Chen, J., Chang, G., Wen, Y., & Song, J. (2009). Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius. Computers and Mathematics with Applications, 57(11–12), 1767–1775.

    Article  MathSciNet  MATH  Google Scholar 

  195. Woehrle, M., Brockhoff, D., Hohm, T., & Bleuler, S. (2010). Investigating coverage and connectivity trade-offs in wireless sensor networks: The benefits of MOEAs. In Multiple criteria decision making for sustainable energy and transportation systems (pp. 211–221). Springer.

    MATH  Google Scholar 

  196. Cheng, C. T., & Chi, K. T. (2012). An analysis on the delay-aware data collection network structure using Pareto optimality. In 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (pp. 348–352). IEEE.

  197. Miller, M. J., Sengul, C., & Gupta, I. (2005). Exploring the energy-latency trade-off for broadcasts in energy-saving sensor networks. In 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05) (pp. 17–26). IEEE.

  198. EkbataniFard, G. H., Monsefi, R., Akbarzadeh-T, M. R., & Yaghmaee, M. H. (2010, May). A multi-objective genetic algorithm based approach for energy efficient QoS-routing in two-tiered wireless sensor networks. In IEEE 5th International Symposium on Wireless Pervasive Computing 2010 (pp. 80–85). IEEE.

  199. Xu, W., Shi, Q., Wei, X., Ma, Z., Zhu, X., & Wang, Y. (2014). Distributed optimal rate–reliability–lifetime tradeoff in time-varying wireless sensor networks. IEEE Transactions on Wireless Communications, 13(9), 4836–4847.

    Article  Google Scholar 

  200. Razzaque, M., Hong, C. S., & Lee, S. (2011). Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors, 11(1), 917–937.

    Article  Google Scholar 

  201. Ansari, M. S., Mahani, A., & Kavian, Y. S. (2013). Energy-efficient network design via modelling: Optimal designing point for energy, reliability, coverage and end-to-end delay. IET Networks, 2(1), 11–18.

    Article  Google Scholar 

  202. Liu, W., Qin, G., Li, S., He, J., & Zhang, X. (2015). A multiobjective evolutionary algorithm for energy-efficient cooperative spectrum sensing in cognitive radio sensor network. International Journal of Distributed Sensor Networks, 11(5), 581589.

    Article  Google Scholar 

  203. Armenia, S., Morabito, G., & Palazzo, S. (2007, May). Analysis of location privacy/energy efficiency tradeoffs in wireless sensor networks. In International Conference on Research in Networking (pp. 215–226). Springer.

  204. Liu, A., Zheng, Z., Zhang, C., Chen, Z., & Shen, X. (2012). Secure and energy-efficient disjoint multipath routing for WSNs. IEEE Transactions on Vehicular Technology, 61(7), 3255–3265.

    Article  Google Scholar 

  205. Adlakha, S., Ganeriwal, S., Schurgers, C., & Srivastava, M. B. (2003). density, accuracy, delay and lifetime tradeoffs in wireless sensor networks—a multidimensional design perspective. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 296–297).

  206. Tynan, R., O'Hare, G. M., O'Grady, M. J., & Muldoon, C. (2009, June). EDLA tradeoffs for wireless sensor network target tracking. In 2009 29th IEEE International Conference on Distributed Computing Systems Workshops (pp. 440–446). IEEE.

  207. Lozano-Garzon, C., & Donoso, Y. (2011, September). A multi-objective routing protocol for a wireless sensor network using a SPEA2 approach. In Proc. International Conference on Applied, Numerical and Computational Mathematics (ICANCM’11)/International Conference on Computers, Digital Communications and Computing (ICDCCC’11) (pp. 39–44).

  208. Bandyopadhyay, S., Tian, Q., & Coyle, E. J. (2005). Spatio-temporal sampling rates and energy efficiency in wireless sensor networks. IEEE/ACM Transactions on Networking, 13(6), 1339–1352.

    Article  Google Scholar 

  209. Tang, D., Li, T., Ren, J., & Wu, J. (2014). Cost-aware secure routing (CASER) protocol design for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 960–973.

    Article  Google Scholar 

  210. Bara’a, A. A., Khalil, E. A., Özdemir, S., & Yıldız, O. (2015). A multi-objective disjoint set covers for reliable lifetime maximization of wireless sensor networks. Wireless Personal Communications, 81(2), 819–838.

    Article  Google Scholar 

  211. Sengupta, S., Das, S., Nasir, M. D., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the executive editor Prof Ramjee Prasad and anonymous reviewers for their critical comments and kind commendations for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Mishra, P.K. A Survey on WSN Issues with its Heuristics and Meta-Heuristics Solutions. Wireless Pers Commun 121, 745–814 (2021). https://doi.org/10.1007/s11277-021-08659-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08659-x

Keywords

Navigation