Skip to main content
Log in

Small Details Gray Scale Image Encryption Using RC6 Block Cipher

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper presents an efficient image cryptosystem for dealing with low details gray scale images. The proposed image cryptosystem is based on using the RC6 encryption algorithm with various operation modes like ECB, CBC, OFB and CFB. The gray scale images is firstly divided into blocks of 128-bit. Then, the RC6 cipher algorithm is applied on 128-bit blocks in different modes of operation. The proposed strategy is inspected with different encryption key performance indicators like entropy, correlation coefficients, irregular deviation, histogram deviation, differential and noise immunity tests. Experimental tests ensure the superiority of the proposed encryption strategy for the encryption of small details images especially with OFB modes of operation. The achieved outcomes ensure the efficiency of the proposed encryption strategy in encrypting small details gray scale images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abuturab, M. R. (2014). An asymmetric color image cryptosystem based on Schur decomposition in gyrator transform domains. Optics and Lasers in Engineering, 58, 39–47.

    Article  Google Scholar 

  2. Abuturab, M. R. (2013). Color image security system based on discrete Hartley transform in gyrator transform domain. Optics and Lasers in Engineering, 51, 317–324.

    Article  Google Scholar 

  3. Schneier, B. (1996). Applied cryptography—protocols, algorithms, and source code (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  4. Liu, Z., Dai, J., Sun, X., & Liu, S. (2010). Color image encryption by using the rotation of color vector in Hartley transform domains. Optics and Lasers in Engineering, 48, 800–805.

    Article  Google Scholar 

  5. Liu, Z., Dai, J., Sun, X., & Liu, S. (2013). Optical color image hiding scheme based on chaotic mapping and Hartley transform. Optics and Lasers in Engineering, 51, 967–972.

    Article  Google Scholar 

  6. Hwang, H.-E., Chang, H. T., & Lie, W.-N. (2009). Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain. Optics Letters, 34, 3917–3919.

    Article  Google Scholar 

  7. Chen, W., Chen, X., & Sheppard, C. J. R. (2010). Optical image encryption based on diffractive imaging. Optics Letters, 35, 3817–3819.

    Article  Google Scholar 

  8. Alfalou, A., & Brosseau, C. (2010). Dual encryption scheme of images using polarized light. Optics Letters, 35, 2185–2187.

    Article  Google Scholar 

  9. Hwang, H. E. (2011). An optical image cryptosystem based on Hartley transform in the Fresnel transform domain. Optics Communication, 284, 3243–3247.

    Article  Google Scholar 

  10. Chen, J., Zhu, Z., Liu, Z., Fu, C., Zhang, L., & Yu, H. (2014). A novel double-image encryption scheme based on cross-image pixel scrambling in gyrator domains. Optics Express, 22, 7349–7361.

    Article  Google Scholar 

  11. Liu, Z., Xu, L., Liu, T., Chen, H., Li, P., Lin, C., et al. (2011). Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains. Optics Communication, 284, 123–128.

    Article  Google Scholar 

  12. Chen, W., Chen, X., & Sheppard, C. J. R. (2012). Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain. Optics Express, 20, 3853–3865.

    Article  Google Scholar 

  13. Faragallah, O. S. (2012). An enhanced chaotic key-based RC5 block cipher adapted to image encryption. International Journal of Electronics, 99(7), 925–943.

    Article  Google Scholar 

  14. Elhoseny, H. M., Faragallah, O. S., Ahmed, H. E. H., Kazemian, H. B., El-sayed, H. S., & Abd El-Samie, F. E. (2016). The effect of fractional fourier transform in encryption quality for digital images. Optik-International Journal for Light and Electron Optics, 127(1), 315–319.

    Article  Google Scholar 

  15. National Bureau of standards. (1977). Data encryption standard. US Government Printing Office Washington, D.C.: Federal information processing standards publication 46.

    Google Scholar 

  16. Stallings, W. (1995). Network and internetwork security: Principles and practice. New Jersey: Prentice-Hall.

    Google Scholar 

  17. Ahmed, H. H., Kalash, H. M., & Farag Allah, O. S. (2006). Encryption quality analysis of rc5 block cipher algorithm for digital images. Journal of Optical Engineering, 45, 107003.

    Article  Google Scholar 

  18. Rivest, R. L., Robshaw, M. J.B., Sidney, R., Yin, Y. L. (1998). The RC6TM block cipher. http://www.rsasecurity.com/rsalabs/rc6/.

  19. Gladman, B. (2003) A specification for Rijndael, the AES algorithm. http://fp.gladman.plus.com/cryptographytechnology/rijndael/aes.Spec.311.pdf.

  20. Elashry, I. F., Faragallah, O. S., Abbas, A. M., El-Rabaie, S., & Abd El-Samie, F. E. (2012). A new method for encrypting images with few details using Rijndael and RC6 block ciphers in the electronic code book mode. Information Security Journal: A Global Perspective, 21, 193–205.

    Google Scholar 

  21. Naeem, E. A., Abd Elnaby, M. M., El-sayed, H. S., Abd El-Samie, F. E., & Faragallah, O. S. (2016). Wavelet fusion for encrypting images with few details”. Computers and Electrical Engineering, 60, 450–470.

    Article  Google Scholar 

  22. El-Fishawy, N., & AbuZaid, O. M. (2007). Quality of encryption measurement of bitmap images with RC6, MRC6, and Rijndael block cipher algorithms. International Journal of Network Security, 5(3), 241–251.

    Google Scholar 

  23. Ferguson, N., Schneier, B., & Kohno, T. (2010). Indianapolis, cryptography engineering: Design principles and practical applications (pp. 63–64). Amsterdam: Wiley.

    Google Scholar 

  24. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied cryptography (pp. 228–233). Boca Raton: CRC Press.

    MATH  Google Scholar 

  25. Huang, K. T., Chiu, J. H., & Shen, S. S. (2013). A novel structure with dynamic operation mode for symmetric-key block ciphers. International Journal of Network Security and Its Applications (IJNSA)., 5(1), 2–13.

    Google Scholar 

  26. Dworkin, M. (2001). Recommendation for block cipher modes of operation: Methods and techniques. Alexandria: NIST Special Publication.http://dx.doi.org/10.6028/NIST.SP.800-38A

    Book  Google Scholar 

  27. Ehrsam, W. F., Meyer, C. H. W., Smith, J. L., & Tuchman, W. L. (1976). Message verification and transmission error detection by block chaining. Alexandria: USA Patent.

    Google Scholar 

  28. Ragab, A. H. M., Farag Alla O. S., Noaman. A. Y. (2014). Encryption quality analysis of the RCBC block cipher compared with RC6 and RC5 algorithms, IACR Cryptology ePrint Archive.

  29. Chang, C. C., Hwang, M. S., & Chen, T. S. (2001). A New encryption algorithm for image cryptosystems. Journal of System Software, 58, 83–91.

    Article  Google Scholar 

  30. NIST Computer Security Division's (CSD) Security Technology Group (STG). (2013). Block cipher modes. Cryptographic toolkit. NIST. Retrieved April 12, 2013.

  31. Davies, D. W., & Parkin, G. I. P. (1983). The average cycle size of the key stream in output feedback encipherment. Advances in cryptology proceedings CRYPTO 82 (pp. 263–282). New York: Plenum Press.

    Google Scholar 

  32. El-din, H., Ahmed, H., Kalash, H. M., & Farag Allah, O. S. (2007). An efficient chaos-based feedback stream cipher (ECBFSC) for image encryption and decryption. Informatica, 31(1), 121–129.

    Google Scholar 

  33. Li, S., Chen, G., & Zheng, X. (2004). Chaos-based encryption for digital images and videos chapter 4 in multimedia security handbook. Boca Raton: CRC Press.

    Google Scholar 

  34. Elkamchouchi, H., Makar, M. A. (2005). Measuring encryption quality of bitmap images encrypted with Rijndael and KAMKAR block ciphers. In: Proceedings twenty second national radio science conference (NRSC 2005), pp. C11, Cairo, Egypt.

  35. Ziedan, I., Fouad, M., Salem, D. H. (2003) Application of data encryption standard to bitmap and JPEG images. In: Proceedings twentieth national radio science conference (NRSC 2003), pp. C16, Egypt.

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama S. Faragallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faragallah, O.S., El-sayed, H.S., Afifi, A. et al. Small Details Gray Scale Image Encryption Using RC6 Block Cipher. Wireless Pers Commun 118, 1559–1589 (2021). https://doi.org/10.1007/s11277-021-08105-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08105-y

Keywords

Navigation