Skip to main content
Log in

Low Complexity Resource Allocation Techniques for Symmetrical Services in OFDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The popularity of symmetrical services like video conferencing, telemedicine etc. is in an upsurge. With the rapid increase in the number of customers for such services, the demand for reliable and computationally feasible resource allocation techniques satisfying all the users are also intensifying. This paper proposes two computationally feasible techniques for allocation of resources in OFDMA system specifically for services that demand similar quality in the uplink and downlink directions. The resource allocation problem is multiobjective in nature with the objectives to maximize the data rates in both directions meanwhile minimizing the difference in the bidirectional data rates for each user. Fairness has been incorporated as a major constraint in the formulation of the optimization problem. Equal Power allocation and weighted sum method are implemented for power allocation while subcarrier allocation is carried out using an evolutionary technique. The solution for subcarrier allocation is represented in a novel manner such that the complexity is reduced to a great extent at the same time attaining acceptable data rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. New, W. -K., Chow, C. -O., & Ma, M. (2014). Performance measurements for symmetrical services in wireless networks. In 2014 IEEE international symposium on intelligent signal processing and communication systems (ISPACS) December 1–4.

  2. Utami, A. R., & Iskandar (2018). Optimization subcarrier allocation and genetic algorithm for resource allocation in MIMO-OFDMA. In Proceedings of the international symposium on electronics and smart devices (ISESD), (pp. 1–4).

  3. El-Hajj, A. M., & Dawy, Z. (2012). On probabilistic queue length based joint uplink/downlink resource allocation in OFDMA networks. In Proceedings of the 19th international conference on telecommunications, (pp. 1–6).

  4. El-Hajj, A. M., Dawy, Z., & Saad, W. (2012). A stable matching game for joint Uplink/Downlink resource allocation in OFDMA wireless networks. In Proceedings of the IEEE international conference on communications, (pp. 5354–5359).

  5. El-Hajji, A. M., & Dawy, Z. (2011). On optimized joint uplink/downlink resource allocation in OFDMA networks. In Proceedings of the IEEE symposium on computers and communications, (pp. 248–253).

  6. El-Hajji, A. M., Awad, M., & Dawy, Z. (2011). SIRA: A socially inspired game theoretic uplink/downlink resource aware allocation in OFDMA systems. In Proceedings of the IEEE international conference on systems, man and cybernetics, (pp. 884–890).

  7. Hou, Z., Wu, D., & Cai, Y. (2010). Subcarrier and power allocation in uplink multi-cell OFDMA systems based on game theory. In Proceedings of the IEEE 12th international conference on communication technology, (pp. 1113–1116).

  8. Kim, H., Lee, H., Ahn, M., Kong, H. B., & Lee, I. (2016). Joint subcarrier and power allocation methods in full duplex wireless powered communication networks for OFDM systems. IEEE Transactions on Wireless Communications, 15(7), 4745–4753.

    Article  Google Scholar 

  9. Loodaricheh, R. A., Mallick, S., & Bhargave, V. K. (2014). Energy efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Transactions on Wireless Communications, 13(11), 6132–6146.

    Article  Google Scholar 

  10. Kim, S., & Lee, J.-W. (2009). Joint resource allocation for uplink and downlink in wireless networks: A case study with user-level utility functions. In Proceedings of the IEEE 69th vehicular technology conference, (pp. 1–5).

  11. Chiang, C. -H., Liao, W., & Liu, L. (2007). Adaptive downlink/uplink bandwidth allocation in IEEE 802.16 (WiMAX) wireless networks: A cross-layer approach. In Proceedings of the IEEE global telecommunications conference (GLOBECOM), (pp. 4775–4779).

  12. Shehata, M. K., Gasser, S. M., El-Badawy, H. M., & Khedr, M. E. (2015). Optimized dual uplink and downlink resource allocation for multiple class of service in OFDM network. In Proceedings of the IEEE international symposium on signal processing and information technology, (pp. 597–601).

  13. Sun, Y., Wing, D., Ng, K., & Schober, R. (2015). Multi-objective optimization for power efficient full duplex wireless communication systems. In Proceedings of the IEEE global communications conference (GLOBECOM), (pp. 1–6).

  14. Di, B., Bayat, S., Song, L., Li, Y., & Han, Z. (2016). Joint user pairing, subchannel, and power allocation in full-duplex multi-user OFDMA networks. IEEE Transactions on Wireless Communications, 15(12), 8260–8272.

    Article  Google Scholar 

  15. Yaacoub, E., & Dawy, Z. (2012). A survey on uplink resource allocation in OFDMA wireless networks. IEEE Communications Surveys & Tutorials, 14(2), 322–337.

    Article  Google Scholar 

  16. Shang, R., Zhang, W., Wen, A., Zhang, K., & Jiao, L. (2016). On the use of immune clone optimization for unconstrained multi-objective resource allocation in the cognitive OFDMA networks. In Proceedings of the IEEE congress on evolutionary computation (CEC), (pp. 806–813).

  17. Marshoud, H., Otrok, H., Barada, H., Estrada, R., & Dziong, Z. (2013) Genetic algorithm based resource allocation and interference mitigation for OFDMA macrocell-femtocells networks. In Proceedings of the 6th joint IFIP wireless and mobile networking conference (WMNC), (pp. 1–7).

  18. Sharma, N., & Anupama, K. R. (2011). On the use of NSGA-II for multi-objective resource allocation in MIMO-OFDMA systems. The Journal of Mobile Communication Computation and Information, 17, 1191–1201.

    Google Scholar 

  19. Gong, L., Zhou, X., Wei, L., & Zhu, Z. (2012). A two-population based evolutionary approach for optimizing routing, modulation and spectrum assignments (RMSA) in O-OFDM networks. IEEE Communication Letters, 16(9), 1520–1523.

    Article  Google Scholar 

  20. Annauth, R., & Rughooputh, H. C. S. (2011). Evolutionary multi-objective approach for resource allocation in OFDM systems. In Proceedings of the IEEE 4th international joint conference on computational sciences and optimization, (pp. 195–199).

  21. Sharma, N., & Anupama, K. R. (2011). A novel genetic algorithm for adaptive resource allocation in MIMO-OFDM systems with proportional rate constraint. Wireless Personal Communications, 61, 111–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Swapna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The objectives of the multiobjective optimization problem is to

The constraints considered are

figure c

The remaining constraints are considered in the implementation of the NSGA II algorithm. The Lagrangian of the problem can be expressed as:

$$ L\left( . \right) = \mathop \sum \limits_{i = 1}^{ K} \alpha_{i1} R_{i1} + \mathop \sum \limits_{i = 1}^{ K} \alpha_{i2} R_{i2} - \lambda_{1} \left[ {\mathop \sum \limits_{j = 1}^{N} \mathop \sum \limits_{i = 1}^{K} p_{ij1} w_{ij1} - p_{BS} } \right] - \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{ij2} - p_{t} } \right] $$

Substituting for the expression of data rates from Shannon’s theorem,

$$ L\left( . \right) = \mathop \sum \limits_{i = 1}^{ K} \alpha_{i1} \mathop \sum \limits_{j = 1}^{N} \omega_{ij1} \log_{2} \left[ {1 + \gamma_{ij1} \tilde{p}_{ij1} } \right] + \mathop \sum \limits_{i = 1}^{ K} \alpha_{i2} \mathop \sum \limits_{j = 1}^{N} \omega_{ij2} \log_{2} \left[ {1 + \gamma_{ij2} \tilde{p}_{ij2} } \right] - \lambda_{1} \left[ {\mathop \sum \limits_{j = 1}^{N} \mathop \sum \limits_{i = 1}^{K} p_{ij1} w_{ij1} - p_{BS} } \right] - \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{ij2} - p_{t} } \right] $$

Grouping the \( \tilde{P}_{ij1} \;{\text{and}}\;\tilde{P}_{ij2} \) terms,

$$ L\left( . \right) = \mathop \sum \limits_{i = 1}^{K} \alpha_{i1} \mathop \sum \limits_{j = 1}^{N} \omega_{ij1} \log_{2} \left[ {1 + \gamma_{ij1} \tilde{p}_{ij1} } \right] - \lambda_{1} \left[ {\mathop \sum \limits_{j = 1}^{N} \mathop \sum \limits_{i = 1}^{K} p_{ij1} w_{ij1} } \right] + \mathop \sum \limits_{i = 1}^{ K} \alpha_{i2} \mathop \sum \limits_{j = 1}^{N} \omega_{ij2} \log_{2} \left[ {1 + \gamma_{ij2} \tilde{p}_{ij2} } \right] - \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{ij2} } \right] + \lambda_{1} \left[ {p_{BS} } \right] + \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{t} } \right] $$
$$ L\left( . \right) = \left( {\mathop \sum \limits_{j = 1}^{N} \omega_{ij1} \log_{2} \left[ {1 + \gamma_{ij1} \tilde{p}_{ij1} } \right]} \right)\left\{ {\mathop \sum \limits_{i = 1}^{K} \alpha_{i1} } \right\} - \lambda_{1} \left[ {\mathop \sum \limits_{j = 1}^{N} \mathop \sum \limits_{i = 1}^{K} p_{ij1} w_{ij1} } \right] + \left( {\mathop \sum \limits_{j = 1}^{N} \omega_{ij2} \log_{2} \left[ {1 + \gamma_{ij2} \tilde{p}_{ij2} } \right]} \right)\left\{ {\mathop \sum \limits_{i = 1}^{ K} \alpha_{i2} } \right\} - \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{ij2} } \right] + \lambda_{1} \left[ {p_{BS} } \right] + \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{t} } \right] $$

Let

$$ \begin{aligned} f\left( {p_{ij1} } \right) = \log_{2} (1 + \gamma_{ij1} p_{ij1} )\left[ {\mathop \sum \limits_{i = 1}^{K} \alpha_{i1} } \right] - \lambda_{1} \mathop \sum \limits_{i = 1}^{K} \mathop \sum \limits_{j = 1}^{N} p_{ij1} \hfill \\ {\text{and}} \hfill \\ f\left( {p_{ij2} } \right) = \log_{2} (1 + \gamma_{ij2} p_{ij2} )\left[ {\mathop \sum \limits_{i = 1}^{K} \alpha_{i2} } \right] - \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \mathop \sum \limits_{j = 1}^{N} p_{ij2} \hfill \\ \end{aligned} $$

Substituting the above assumption in the previous derived equation

$$ L\left( . \right) = \left( {\mathop \sum \limits_{j = 1}^{K} \omega_{ij1} f\left( {p_{ij1} } \right)} \right) + \left( {\mathop \sum \limits_{j = 1}^{K} \omega_{ij2} f\left( {p_{ij1} } \right)} \right) + \lambda_{1} \left[ {p_{BS} } \right] + \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{t} } \right] $$
$$ L\left( . \right) = \left( {\mathop \sum \limits_{j = 1}^{K} \omega_{ij1} f\left( {p_{ij1} } \right)} \right) + \left( {\mathop \sum \limits_{j = 1}^{K} \omega_{ij2} f\left( {p_{ij2} } \right)} \right) + \lambda_{1} \left[ {p_{BS} } \right] + \mathop \sum \limits_{i = 1}^{K} \lambda_{i2} \left[ {\mathop \sum \limits_{j = 1}^{N} p_{t} } \right] + \mathop \sum \limits_{i = 1}^{K} \mu_{i1} \left[ { \delta } \right] + \mathop \sum \limits_{i = 1}^{K} \eta_{i1} \left[ { \delta } \right] - \mathop \sum \limits_{i = 1}^{K} (\upsilon_{i1} + \tau_{i1} )\left[ {R_{min} } \right] $$

The constant terms are neglected since it doesn’t affect the maximization of the function. Taking the derivatives of \( f\left( {p_{ij1} } \right) \) and \( f\left( {p_{ij2} } \right) \) with respect to power and setting it to zero yields,

$$ \frac{{df\left( {p_{ij1} } \right)}}{{dp_{ij1} }} = \left( {\mathop \sum \limits_{i = 1}^{K} \alpha_{i1} } \right)\left[ {\frac{{\gamma_{ij1} }}{{\ln 2 (1 + \gamma_{ij1} p_{ij1} }}} \right] + \lambda_{1} $$

Equating to zero yields,

$$ \left( {\mathop \sum \limits_{i = 1}^{K} \alpha_{i1} } \right)\left[ {\frac{{\gamma_{ij1} }}{{\ln 2 (1 + \gamma_{ij1} p_{ij1} }}} \right] + \lambda_{1} = 0 $$
$$ p_{ij1} = \left\{ {\left( {\mathop \sum \limits_{i = 1}^{K} \alpha_{i1} } \right)\frac{1}{{ - \lambda_{1} ln2}}} \right\} - \frac{1}{{\gamma_{ij1} }} $$

Similarly,

$$ p_{ij2} = \left\{ {\left( {\mathop \sum \limits_{i = 1}^{K} \alpha_{i2} } \right)\frac{1}{{\mathop \sum \nolimits_{i = 1}^{K} \lambda_{i} ln2}}} \right\} - \frac{1}{{\gamma_{ij2} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, P.S., Pillai, S.S. Low Complexity Resource Allocation Techniques for Symmetrical Services in OFDMA Systems. Wireless Pers Commun 116, 3217–3234 (2021). https://doi.org/10.1007/s11277-020-07844-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07844-8

Keywords

Navigation