Skip to main content
Log in

Design and Analysis of a Multi-band Flower Shaped Patch Antenna for WLAN/WiMAX/ISM Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the design and parametric analysis of a flower-shaped patch antenna. The proposed patch antenna is designed using FR-4 substrate mounted on the Jerusalem cross-shaped DGS structure. A Double Negative (DNG) triple Complementary Split Ring Resonator is embedded inside the substrate. A circular foam substrate with the dimensions of 10 × 4 × 10 × 2 mm3 is sandwiched between the patch and the FR-4 substrate. The overall dimensions of the patch are 23.5 × 16 mm2. The proposed antenna resonates at 5.2 GHz and 8.25 GHz respectively. This also possesses wide bandwidth of 1.2 GHz (24.1%) in the range of 4.95–6.15 GHz and 2.2 GHz (26.5%) in the range of 7.1–9.3 GHz. The gains in these bands are observed to be 3.93 dBi and 5.02 dBi respectively. The whole design is carried out in CST-microwave studio 2016 utilizing Finite Integration Technique. The developed multiband antenna can be useful for several wireless communication applications, such as WLAN, WiMAX, and ISM band. The proposed antenna is fabricated and its performance parameters are measured. The simulated and measured results are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Raghava, N. S., & De, A. (2006). Photonic band gap stacked rectangular microstrip antenna for road vehicle communication. IEEE Transactions of Antenna and Wireless Propagation Letters,5, 4241–4423.

    Google Scholar 

  2. Raghava, N. S., & De, A. (2007). A novel high performance patch radiator. International Journal in Microwave Science and Technology,2008, 1–4.

    Article  Google Scholar 

  3. Raghava, N. S., & De, A. (2009). Effect of an air gap width on the performance of a stacked square electronic band gap antenna. International Journal of Microwave and Optical Technology,4(5), 315–317.

    Google Scholar 

  4. Zakaria, N. A., Sulaiman, A. A., & Latip, M. A. A. (2008). Design of a circular microstrip antenna. In IEEE-international RF and microwave proceedings (pp. 289–292), Malaysia.

  5. Paramayudha, K., Santiko, A. B., Wahyu, Y., Oktafiani, F., Fitriadi, A., & Wijanto, H. (2016). Design and realization of circular patch antenna for S-Band Coastal Radar. In International conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET) (pp. 115–118), Indonesia.

  6. Saleem, R., & Quddus, A. (2017). Circular slotted reconfigurable multiband patch antenna for wireless applications. In International symposium on applied computational electromagnetics society (ACES) (pp. 1–2), Italy.

  7. Guo, X., Liao, W., Zhang, Q., & Chen, Y. (2016). A dual-band embedded inverted T-slot circular microstrip patch antenna. In IEEE 5th Asia-Pacific conference on antennas and propagation (APCAP) (pp. 151–152), Taiwan.

  8. Sharma, S., & Tripathi, C. C. (2017). A novel reconfigurable antenna with spectrum sensing mechanism for CR system. Progress in Electromagnetics Research C,72, 187–196.

    Article  Google Scholar 

  9. Liu, Y., Wang, H., Xue, F., & Dong, X. (2017). A new single-layer reflectarray using circular patch with semicircular ring slots. Progress in Electromagnetics Research Letters,66, 105–111.

    Article  Google Scholar 

  10. Shukla, B. K., Kashyap, N., & Baghel, R. K. (2017). Circular slotted elliptical patch antenna with elliptical notch in ground. Progress in Electromagnetics Research C,74, 181–189.

    Article  Google Scholar 

  11. Kurniawan, F., Sri, J. T., Sumantyo, K. I., Kuze, H., & Gao, S. (2017). Patch antenna using rectangular centre slot and circular ground slot for circularly polarized synthetic aperture radar (CP-SAR) application. Progress in Electromagnetics Research,160, 51–61.

    Article  Google Scholar 

  12. Tiwari, R. N., Singh, P., & Kanaujia, B. K. (2017). Butter fly shape compact microstrip antenna for wideband applications. Progress in Electromagnetics Research Letters,69, 45–50.

    Article  Google Scholar 

  13. Dan, Yu., Wan, Y.-T., & Zhang, H.-B. (2017). Low-profile wideband circularly polarized microstrip antenna with conical radiation pattern. Progress in Electromagnetics Research C,72, 81–89.

    Article  Google Scholar 

  14. Kaushal, D., & Shanmuganantham, T. (2018). Parametric enhancement of a novel microstrip patch antenna using Circular SRR Loaded Fractal Geometry. Alexandria Engineering Journal,57, 2551–2557.

    Article  Google Scholar 

  15. KhalidHati, N., ElHajjaji, A., & Asselman, H. (2016). Design of new antenna in the form of dollar-symbole for WLAN technology. Procedia Technology,22, 606–613.

    Article  Google Scholar 

  16. Kumar Naik, K., & Amala Vijaya Sri, P. (2018). Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications. Progress in Electromagnetics Research M,63, 163–173.

    Article  Google Scholar 

  17. Dawar, P., Raghava, N. S., & De, A. (2017). Miniaturized UWB multi-resonance patch antenna loaded with novel modified H-shape SRR metamaterial for microspacecraft applications. Frontiers of Information Technology & Electronic Engineering,18(11), 1883–1891.

    Article  Google Scholar 

  18. Dawar, P., De, A., & Raghava, N. S. (2016). Directive and broadband 4-seg SRR metamaterial antennas. International Journal of Advanced Science and Technology,97, 1–12.

    Article  Google Scholar 

  19. Dawar, P., Raghava, N. S., & De, A. (2015). Tunable and directive metamaterial-inspired antennas for ‘C’ band applications. International Journal of Microwave and Optical Technology,10(3), 168–175.

    Google Scholar 

  20. Dawar, P., Raghava, N. S., & De, A. (2016). High gain, directive and miniaturized metamaterial C-band antenna. Cogent Physics,3, 1236510.

    Article  Google Scholar 

  21. Bahl, I., Bhartia, P., Garg, R., & Ittipiboon, A. (2000). Microstrip antenna design handbook (2nd ed.). London: Artech House (Antenna and Wave propagation Library).

    Google Scholar 

  22. Viswanadha, K., & Nallanthighal, R. (2018). Design and analysis of a meander line cornered microstrip patch antenna with square slotted EBG structure for ISM/WLAN applications. International Journal of Advanced Science and Technology,113, 93–102.

    Article  Google Scholar 

  23. Rothwell, E. J., Frasch, J. L., Ellison, S. M., Chahal, P., & Ouedraogo, R. O. (2016). Analysis of the Nicolson–Ross–Weir method for characterizing the electromagnetic properties of engineered materials. Progress in Electromagnetics Research,157, 31–47.

    Article  Google Scholar 

  24. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2015). Analysis and design of dual band compact stacked Microstrip patch antenna with defected ground structure for WLAN/WiMax applications. AEU - International Journal of Electronics and Communications,69(1), 39–47.

    Article  Google Scholar 

  25. Awais, Q., Chattha, H. T., Jamil, M., Jin, Y., Tahir, F. A., & Rehman, M. U. (2018). A novel dual ultrawideband CPW-fed printed antenna for internet of things (IoT) applications. Wireless Communications and Mobile Computing,2018, 1–9.

    Article  Google Scholar 

  26. Kumar, S., Singh, A. P., & Khandelwal, M. K. (2017). Theoretical analysis and design of dual band DGS antenna with small frequency ratio for Wi-Fi and WiMAX applications. Progress in Electromagnetics Research M,62, 153–166.

    Article  Google Scholar 

  27. Saroj, A. K., Mohd, G., Siddiqui, M. K., & Ansari, J. A. (2017). Design of multiband quad-rectangular shaped microstrip antenna for wireless applications. Progress in Electromagnetics Research M,59, 213–221.

    Article  Google Scholar 

  28. Kaur, A., Khanna, R., & Kartikeyan, M. (2017). A multilayer dual wideband circularly polarized microstrip antenna with DGS for WLAN/Bluetooth/ZigBee/Wi-Max/IMT band applications. International Journal of Microwave and Wireless Technologies,9(2), 317–325.

    Article  Google Scholar 

  29. Khanna, P., Sharma, A., Shinghal, K., & Kumar, A. (2016). A defected structure shaped CPW-fed wideband microstrip antenna for wireless applications. Journal of Engineering,2016, 1–7.

    Article  Google Scholar 

  30. Ali, T., Aw, M. S., & Biradar, R. C. (2018). A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S1759078718000272.

    Article  Google Scholar 

  31. Bhatia, S. S., Sahni, A., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress in Electromagnetics Research M,70, 21–31.

    Google Scholar 

  32. Goswami, S. A., & Karia, D. (2017). A compact monopole antenna for wireless applications with enhanced bandwidth. AEU - International Journal of Electronics and Communications,72, 33–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karteek Viswanadha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanadha, K., Raghava, N.S. Design and Analysis of a Multi-band Flower Shaped Patch Antenna for WLAN/WiMAX/ISM Band Applications. Wireless Pers Commun 112, 863–887 (2020). https://doi.org/10.1007/s11277-020-07078-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07078-8

Keywords

Navigation