Skip to main content
Log in

Spectrum Sensing in Cognitive Radio Using Actor–Critic Neural Network with Krill Herd-Whale Optimization Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectrum sensing is the active research area in the Cognitive radio networks that initiates the effective data sharing between the licensed and the unlicensed users of Cognitive Network. Maximizing the detection probability for a provided false alarm rate is a hectic challenge of most of the spectral sensing methods. The paper proposes a spectral sensing method, termed as Krill-Herd Whale optimization-based actor critic neural network. The unoccupied spectrum is optimally determined using the proposed method that allocates the free spectrum bands to the primary users instantly such that the delay is minimized due to the effective functioning of the fusion center. For the effective sensing, the Eigen-value-based cooperative sensing is activated in the cognitive radio. The analysis of the proposed method is progressed based on the performance metrics, such as false alarm probability and detection probability. The proposed spectral sensing method outperforms the existing methods that yield a maximum probability of detection and minimum probability of false alarm at a rate of 0.9805 and of 0.009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pandi, N., & Kumar, A. (2017). A review on cognitive radio for next generation cellular network and its challenges. American Journal of Engineering and Applied Sciences, 10(2), ​334–347.

    Article  Google Scholar 

  2. Marinho, J., Granjal, J., & Monteiro, E. (2015). A survey on security attacks and countermeasures with primary user detection in cognitive radio networks. EURASIP Journal on Information Security, 2015, 1–14.

    Article  Google Scholar 

  3. Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., & Shen, X. (2015). Energy harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), ​831–843.

    Article  Google Scholar 

  4. Supraja, P., & Jayashri, S. (2016). Optimized neural network for spectrum prediction scheme in cognitive radio. Wireless Personal Communication, 94(4), ​2597–2611.

    Article  Google Scholar 

  5. Roy, P., & Muralidhar, M. (2015). Channel state prediction in a cognitive radio network using neural network Levenberg–Marquardt algorithm. International Journal of Wireless Communications and Networking Technologies, 4(2), 24–29.

    Google Scholar 

  6. Venkatesan, M., & Kulkarni, A. V. (2014). Spectrum predictor model for cognitive radio. In International conference on advances in engineering & technology (ICAET) (pp. 10–14).

  7. Sadough, S. S., & Ivrigh, S. S. (2012). Spectrum sensing for cognitive radio systems through primary user activity prediction. Radio Engineering, 21(4), 1092–1100.

    Google Scholar 

  8. Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469.

    Article  Google Scholar 

  9. Christopher Clement, J., Bharath Reddy, B., & Emmanuel, D. S. (2016). An energy-efficient cooperative spectrum sensing strategy with robustness against noise uncertainty for cognitive radio networks. Arabian Journal for Science and Engineering, 41(9), 3399–3405.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Zhou, M., Xie, L., & Jin, X. (2013). Fault-tolerant cooperative spectrum sensing scheme for cognitive radio networks. Wireless Personal Communications, 71(4), 2379–2397.

    Article  Google Scholar 

  11. Yu, H., Tang, W., & Li, S. (2011). Optimization of cooperative spectrum sensing with sensing user selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/1687-1499-2011-208.

    Article  Google Scholar 

  12. Akyildiz, I., Lo, B., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  13. Li, H., Xing, X., Zhu, J., Cheng, X., Li, K., Bie, R., Jing, T. (2015). Utility-based cooperative spectrum sensing scheduling in cognitive radio networks. IEEE Transactions on Vehicular Technology, 66​(1), 645–655.

    Google Scholar 

  14. Alom, Md. Z., Godder, T. K., Morshed, M. N., & Maali, A. (2017). Enhanced spectrum sensing based on energy detection in cognitive radio network using adaptive threshold.  In Proceedings of the IEEE International Conference on Networking, Systems and Security (NSysS).

  15. Tumuluru, V. K., Wang, P., & Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. In IEEE international conference on communications (ICC) (pp. 1–5).

  16. Ferreira, P. V. R., Paffenrothy, R., Wyglinski, A. M., Hackettz, T. M., Bilénz, S. G., Reinhartx, R. C., & Mortensenx, D. J. (2017). Multi-objective reinforcement learning-based deep neural networks for cognitive space communications. In Proceedings of cognitive communications for aerospace applications workshop (CCAA) (pp. 1–8).

  17. Surampudi, A., & Kalimuthu, K. (2016). An adaptive decision threshold scheme for the matched filter method of spectrum sensing in cognitive radio using artificial neural networks. In Proceedings of information processing (IICIP) (pp. 1–5).

  18. Ratre, A., & Pankajakshan, V. (2017). Tucker visual search-based hybrid tracking model and Fractional Kohonen self-organizing map for anomaly localization and detection in surveillance videos. The Imaging Science Journal, 66, 1–16.

    Google Scholar 

  19. Dhumane, A. V., & Prasad, R. S. (2017). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 1–15.

  20. Nipanikar, S. I., Hima Deepthi, V., & Kulkarni, N. (2017). A sparse representation based image steganography using particle swarm optimization and wavelet transform. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2017.09.005.

    Article  Google Scholar 

  21. Shelke, P. M., & Prasad, R. S. (2018). An improved anti-forensics JPEG compression using least Cuckoo search algorithm. The Imaging Science Journal, 66(3), 169–183.

    Article  Google Scholar 

  22. Krishnamoorthy, N., & Asokan, R. (2014). Optimized resource selection to promote grid scheduling using hill climbing algorithm. International Journal of Computer Science and Telecommunications, 5(2), 14–19.

    Google Scholar 

  23. Liu, K. (2016). Optimization algorithm of cognitive radio spectrum sensing based on quantum neural network. Automatic Control and Computer Sciences, 50(5), 324–331.

    Article  Google Scholar 

  24. Sun, M., Zhao, C., Yan, S., & Li, B. (2017). A novel spectrum sensing for cognitive radio networks with noise uncertainty. IEEE Transactions on Vehicular Technology, 66(5), 4424–4429.

    Article  Google Scholar 

  25. Yang, H., Liang, Y., Miao, J., & Zhao, D. (2017). Radio spectrum management for cognitive radio based on fuzzy neural methodology. Part of the Advances in Intelligent Systems and Computing book series (AISC), 611, 609–616.

    Article  Google Scholar 

  26. Huang, H., & Yuan, C. (2018). Cooperative spectrum sensing over generalized fading channels based on energy detection. China Communications, 15(5), 128–137.

    Article  Google Scholar 

  27. Lee, K., Yoon, C., Jo, O., & Lee, W. (2018). Joint optimization of spectrum sensing and transmit power in energy harvesting-based cognitive radio networks. IEEE Access, 6, 30653–30662.

    Article  Google Scholar 

  28. Ivanov, A., Mihovska, A., & Tonchev, K. (2018). Real-time adaptive spectrum sensing for cyclostationary and energy detectors. IEEE Aerospace and Electronic Systems Magazine, 33(5–6), 20–33.

    Article  Google Scholar 

  29. Zhao, D., Wang, B., & Liu, D. (2013). A supervised actor–critic approach for adaptive cruise control. Soft Computing, 17(11), 2089–2099.

    Article  Google Scholar 

  30. Du, D., & Fei, M. (2008). A two-layer networked learning control system using actor–critic neural network. Applied Mathematics and Computation, 205(1), 26–36.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17, 4831–4845.

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirjalili, S., & Lewis, A. (2016). The Whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  33. Guimarães, D. A., da Silva, C. R. N., & de Souza, R. A. A. (2013). Cooperative spectrum sensing using eigenvalue fusion for OFDMA and other wideband signals. Journal of Sensor and Actuator Networks, 2, 1–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Bhowmik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, M., Malathi, P. Spectrum Sensing in Cognitive Radio Using Actor–Critic Neural Network with Krill Herd-Whale Optimization Algorithm. Wireless Pers Commun 105, 335–354 (2019). https://doi.org/10.1007/s11277-018-6115-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6115-5

Keywords

Navigation