Skip to main content

Advertisement

Log in

A Novel Fully Differential CMOS Class-E Power Amplifier with Higher Output Power and Efficiency for IoT Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The class-E amplifiers are used in many devices which need high efficiency, high gain and low power consumption. These types of power amplifiers could be used in the Internet of Thing gadgets, which are widely developed as portable electronic tools nowadays. In this work we present a novel class-E power amplifier (CEPA) that achieves high power gain and high efficiency simultaneously. These approaches are attained by using fully differential topology in our PA design and employing cross coupling neutralization technique. Power consumption of proposed PA is decreased by using LC tank VCO. On the other hand, high power efficiency is achieved by using differential topology. All components are adjusted to have better performance in IoT applications. The proposed CEPA have 29.5 dBm output power in 2.4 GHz, 36 dB power gain and 43.65% PAE. All of our results are verified by the post layout simulations that perform by 0.18 um standard CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ruiz, H. S., & Pérez, R. B. (2013). Linear CMOS RF power amplifiers. Berlin: Springer.

    MATH  Google Scholar 

  2. Sokal, N. O., & Sokal, A. D. (1975). Class EA new class of high-efficiency tuned single-ended switching power amplifiers. IEEE Journal of Solid-State Circuits, 10, 168–176.

    Article  Google Scholar 

  3. Kumar, N., Prakash, C., Grebennikov, A., & Mediano, A. (2008). High-efficiency broadband parallel-circuit class E RF power amplifier with reactance-compensation technique. IEEE Transactions on Microwave Theory and Techniques, 56, 604–612.

    Article  Google Scholar 

  4. Manjula, S., & Selvathi, D. (2015). Optimal design of low power CMOS power amplifier using particle swarm optimization technique. Wireless Personal Communications, 82, 2275–2289.

    Article  Google Scholar 

  5. Grebennikov, A. (2002). Class E high-efficiency power amplifiers: Historical aspect and future prospect. Applied Microwave and Wireless, 14, 64.

    Google Scholar 

  6. Zhang, X., Zhu, X., & Tang, Y. (2014). A new metric for the envelope of OFDM signals based on memory power amplifier. Wireless Personal Communications, 79, 1911–1923.

    Article  Google Scholar 

  7. Du, X., Nan, J., Chen, W., & Shao, Z. (2014). ‘New’solutions of Class-E power amplifier with finite dc feed inductor at any duty ratio. Circuits, Devices & Systems, IET, 8, 311–321.

    Article  Google Scholar 

  8. Jayamon, J. A, Buckwalter, J. F., & Asbeck, P. M. (2015). 28 GHz > 250 mW CMOS power amplifier using multigate-cell design. In Compound semiconductor integrated circuit symposium (CSICS), 2015 IEEE (pp. 1–4).

  9. Narendra, K., & YewKok, T. (2014). Optimised high-efficiency class E radio frequency power amplifier for wide bandwidth and high harmonics suppression. IET Circuits, Devices and Systems, 8, 82–89.

    Article  Google Scholar 

  10. Jee, S., Moon, J., Kim, J., Son, J., & Kim, B. (2012). Switching behavior of class-E power amplifier and its operation above maximum frequency. IEEE Transactions on Microwave Theory and Techniques, 60, 89–98.

    Article  Google Scholar 

  11. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2013). Analysis and design of class-E power amplifier with MOSFET parasitic linear and nonlinear capacitances at any duty ratio. IEEE Transactions on Power Electronics, 28, 5222–5232.

    Article  Google Scholar 

  12. Magaña, M. E., Bogya, R., & Schüssele, L. (2009). Model matching approach in RF power amplifier linearization. Wireless Personal Communications, 48, 395–409.

    Article  Google Scholar 

  13. Mediano, A., Molina-Gaudó, P., & Bernal, C. (2007). Design of class E amplifier with nonlinear and linear shunt capacitances for any duty cycle. IEEE Transactions on Microwave Theory and Techniques, 55, 484–492.

    Article  Google Scholar 

  14. Heydari, P., & Zhang, Y. (2003). A novel high frequency, high-efficiency, differential class-E power amplifier in 0.18 μm CMOS. In Proceedings of the 2003 international symposium on Low power electronics and design (pp. 455–458).

  15. Iwadare, M., Mori, S., & Ikeda, K. (1996). Even harmonic resonant class E tuned power amplifier without RF choke. Electronics and Communications in Japan (Part I: Communications), 79, 23–30.

    Article  Google Scholar 

  16. Avratoglou, C. P., & Voulgaris, N. C. (1988). A class E tuned amplifier configuration with finite DC-feed inductance and no capacitance in parallel with switch. IEEE Transactions on Circuits and Systems, 35, 416–422.

    Article  MathSciNet  Google Scholar 

  17. Grebennikov A. V., & Jaeger, H. (2002). Class E with parallel circuit-a new challenge for high-efficiency RF and microwave power amplifiers. In Microwave Symposium Digest, 2002 IEEE MTT-S International (pp. 1627–1630).

  18. Grebennikov, A. (2004). Load network design techniques for class E RF and microwave amplifiers. High Frequency Electronics, 3, 18–32.

    Google Scholar 

  19. Hasani, J. Y., & Kamarei, M. (2008). Analysis and optimum design of a class E RF power amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 1759–1768.

    Article  MathSciNet  Google Scholar 

  20. Zhuo, W., Li, X., Shekhar, S., Embabi, S., Gyvez, D., Pineda, J., et al. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 52, 875–879.

    Article  Google Scholar 

  21. Asada, H., Matsushita, K., Bunsen, K., Okada, K., & Matsuzawa, A. (2011). A 60 GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16% PAE. In Microwave Conference (EuMC), 2011 41st European, 2011 (pp. 1115–1118).

  22. Su, D., & McFarland, W. (1997). A 2.5-V, 1-W monolithic CMOS RF power amplifier. In Custom Integrated Circuits Conference, 1997., Proceedings of the IEEE 1997 (pp. 189–192).

  23. Tsai, K.-C., & Gray, P. R. (1999). A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications. IEEE Journal of Solid-State Circuits, 34, 962–970.

    Article  Google Scholar 

  24. Brama, R., Larcher, L., Mazzanti, A., & Svelto, F. (2008). A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications. IEEE Journal of Solid-State Circuits, 43, 1755–1762.

    Article  Google Scholar 

  25. Mazzanti, A., Larcher, L., Brama, R., & Svelto, F. (2006). Analysis of reliability and power efficiency in cascode class-E PAs. IEEE Journal of Solid-State Circuits, 41, 1222–1229.

    Article  Google Scholar 

  26. Chan, W. L., Long, J. R., Spirito, M., & Pekarik, J. J. (2009). A 60 GHz-band 1 V 11.5 dBm power amplifier with 11% PAE in 65 nm CMOS. In Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International (pp. 380–381, 381a).

  27. Hajimiri, A., & Lee, T. H. (1999). Design issues in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34, 717–724.

    Article  Google Scholar 

  28. Yu, C. P., Ryu, C., Lau, J., Lee, T. H., & Wong, S. (1996). A physical model for planar spiral inductors on silicon. In International electron devices meeting (pp. 155–158).

  29. Meshkin, R., Saberkari, A., & Niaboli-Guilani, M. (2010). A novel 2.4 GHz CMOS class-E power amplifier with efficient power control for wireless communications. In Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International Conference on (pp. 599–602).

  30. Mertens, K. L., & Steyaert, M. S. (2002). A 700-MHz 1-W fully differential CMOS class-E power amplifier. IEEE Journal of Solid-State Circuits, 37, 137–141.

    Article  Google Scholar 

  31. Yoo, C., & Huang, Q. (2001). A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-μm CMOS. IEEE Journal of Solid-State Circuits, 36, 823–830.

    Article  Google Scholar 

  32. Song, Y., Lee, S., Cho, E., Lee, J., & Nam, S. (2010). A CMOS class-E power amplifier with voltage stress relief and enhanced efficiency. IEEE Transactions on Microwave Theory and Techniques, 58, 310–317.

    Article  Google Scholar 

  33. Brama, R., Larcher, L., Mazzanti, A., & Svelto, F. (2007). A 1.7-GHz 31 dBm differential CMOS class-E power amplifier with 58% PAE. In Custom Integrated Circuits Conference, 2007. CICC’07. IEEE (pp. 551–554).

Download references

Acknowledgements

The authors would like to thank Dr. Mohsen Jalali for helping in design simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ghaznavi-Ghoushchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, A.R., Ghaznavi-Ghoushchi, M.B. A Novel Fully Differential CMOS Class-E Power Amplifier with Higher Output Power and Efficiency for IoT Application. Wireless Pers Commun 97, 3203–3213 (2017). https://doi.org/10.1007/s11277-017-4670-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4670-9

Keywords

Navigation