Skip to main content
Log in

Characterising an In-Room MIMO System Employing Elevation-Directional Access Point Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The performance of an in-room MIMO system is investigated with the use of elevation-directional access point (AP) antennas which emphasize wall-reflected NLOS components instead of non-directional antennas. Simulation results suggest that the mean MIMO capacity throughout an idealised in-room environment can be improved on the order of 14% coupled with a 3% increase in mean relative MIMO gain if the appropriate main-lobe elevation direction is selected. The associated antennas are omnidirectional in azimuth and exhibit directivities and elevation half-power beamwidths on the order of 6 dBi and 28°, respectively. Experimental results obtained via channel measurements reveal more modest improvements due to the increased multipath richness exhibited by the real environment; a mean capacity improvement of approximately 5% is achieved, but this is accompanied by a minor reduction in relative MIMO gain. This level of performance may not be significant enough to warrant switching to elevation-directional AP antennas; however, the measured results provide qualitative verification of the simulation model. In any case, the results quantify the modest in-room MIMO performance gains one should expect when considering only wall reflections in the design of elevation-directional AP antennas at microwave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balanis, C. A. (2005). Antenna theory: Analysis and design (3rd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  2. Blanco, M., Kokku, R., Ramachandran, K., Rangarajan, S., & Sundaresan, K. (2008). On the effectiveness of switched beam antennas in indoor environments. In Proceedings on 9th international conference on passive and active network measurement (pp. 122–131). Cleveland, OH.

  3. Bleicher, A. (2013). A surge in small cells. IEEE Spectrum, 50(1), 38–39.

    Article  Google Scholar 

  4. Browne, D. W., Guterman, J., Fitz, M. P., & Rahmat-Samii, Y. (2007). Experimental validation of capacity preserving design for MIMO arrays. In International workshop on antenna technology (pp. 203–206). Cambridge.

  5. Chuang, H. R., & Kuo, L. C. (2003). 3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications. IEEE Transactions on Microwave Theory and Techniques, 51(2), 374–381.

    Article  Google Scholar 

  6. Cuiñas, I., Pugliese, J. P., Hammoudeh, A., & SÁnchez, M. G. (2001). Frequency dependence of dielectric constant of construction materials in microwave and millimeter-wave bands. Microwave and Optical Technology Letters, 30(2), 123–124.

    Article  Google Scholar 

  7. de Backer, B., Börjeson, H., de Zutter, D., & Olyslager, F. (2003). Propagation mechanisms for UHF wave transmission through walls and windows. IEEE Transactions on Vehicular Technology, 52(5), 1297–1307.

    Article  Google Scholar 

  8. Elnaggar, M., Safavi-Naeini, S., & Chaudhuri, S.K. (2003). Simulation and maximum capacity verification of indoor MIMO antenna systems in a simple multipath-rich environment. In IEEE Antennas and propagation society international symposium (Vol. 2, pp. 527–530). Columbus, OH.

  9. Elnaggar, M., Safavi-Naeini, S., & Chaudhuri, S. K. (2004). Simulation of the achievable indoor MIMO capacity by using an adaptive phased-array. In IEEE radio wireless symposium (pp. 155–158). Atlanta, GA.

  10. Eugene, C. H. Y., Sakaguchi, K., & Araki, K. (2004). Experimental and analytical investigation of MIMO channel capacity in an indoor line-of-sight environment. In 15th IEEE international symposium on personal, indoor and mobile radio communications (Vol. 1, pp. 295–300). Barcelona.

  11. Forenza, A., & Heath, R. W. (2004). Impact of antenna geometry on MIMO communication in indoor clustered channels. In IEEE antennas and propagation society international symposium (Vol. 2, pp. 1700–1703). Monterey, CA.

  12. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  13. Gustafsson, M., & Karlsson, A. (2006). Design of frequency selective windows for improved indoor outdoor communication. IEEE Transactions on Antennas and Propagation, 54(6), 1897–1900.

    Article  Google Scholar 

  14. Hermosilla, C., Feick, R., Valenzuela, R. A., & Ahumada, L. (2009). Improving MIMO capacity with directive antennas for outdoor–indoor scenarios. IEEE Transactions on Wireless Communications, 8(5), 2177–2181.

    Article  Google Scholar 

  15. Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824.

    Article  Google Scholar 

  16. Jiang, J. S., & Ingram, M. A. (2005). Spherical-wave model for short-range MIMO. IEEE Transactions on Communications, 53(9), 1534–1541.

    Article  Google Scholar 

  17. Kafle, P. L., Intarapanich, A., Sesay, A. B., McRory, J., & Davies, R. J. (2008). Spatial correlation and capacity measurements for wideband MIMO channels in indoor office environment. IEEE Transactions on Wireless Communications, 7(5), 1560–1571.

    Article  Google Scholar 

  18. Kim, T. H., Salonidis, T., & Lundgren, H. (2012). MIMO wireless networks with directional antennas in indoor environments. In 2012 proceedings IEEE INFOCOM (pp. 2941–2945). Orlando, FL.

  19. Knopp, A., Chouayakh, M., & Lankl, B. (2006). MIMO-capacities for broadband in-room quasi-deterministic line-of-sight radio channels derived from measurements. In: IEEE 17th international symposium on personal, indoor and mobile radio communications (pp. 1–7). Helsinki.

  20. Knopp, A., Chouayakh, M., Schwarz, R., & Lankl, B. (2006). Measured MIMO capacity enhancement in correlated LOS indoor channels via optimized antenna setups. In International conference on wireless information networks and systems (pp. 187–193). Setúbal.

  21. Kraus, J. D. (1988). Antennas (2nd ed.). New York, NY: McGraw-Hill Inc.

    Google Scholar 

  22. Kuipers, B. W. M., & Correia, L. M. (2008). Modelling the relative MIMO gain. In IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–5). Cannes.

  23. Lakshmanan, S., Sunderaresan, K., Rangarajan, S., & Sivakumar, R. (2010). The myth of spatial reuse with directional antennas in indoor wireless networks. In PAM’10 (pp. 1–10). Zurich.

  24. Liu, X., Seshan, S., & Steenkiste, P. (2011). When are directional antennas useful in indoor environments? In WiNTECH’11 (pp. 59–66). Las Vegas, NV.

  25. Liu, X., Sheth, A., Kaminsky, M., Papagiannaki, K., Seshan, S., & Steenkiste, P. (2009). DIRC: Increasing indoor wireless capacity using directional antennas. In SIGCOMM’09 (pp. 1–12). Barcelona.

  26. Martin, C. C., Winters, J. H., & Sollenberger, N. R. (2001). MIMO radio channel measurements: Performance comparison of antenna configurations. In VTC 2001 Fall (Vol. 2, pp. 1225–1229). Atlantic City, NJ.

  27. Molisch, A. F., Steinbauer, M., Toeltsch, M., Bonek, E., & ThomÄ, R. S. (2002). Capacity of MIMO systems based on measured wireless channels. IEEE Journal on Selected Areas in Communications, 20(3), 561–569.

    Article  Google Scholar 

  28. Nebel, M., Knopp, A., & Lankl, B. (2007). Spatial capacity optimization for indoor MIMO LOS channels applying methods of high-rank transfer matrix construction. In IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1–5). Athens.

  29. Porrat, D., & Cox, D. C. (2004). UHF propagation in indoor hallways. IEEE Transactions on Wireless Communications, 3(4), 1188–1198.

    Article  Google Scholar 

  30. Pozar, D. M. (2005). Microwave engineering (3rd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  31. Stridh, R., Yu, K., Ottersten, B., & Karlsson, P. (2005). MIMO channel capacity and modeling issues on a measured indoor radio channel at 5.8 GHz. IEEE Transactions on Wireless Communications, 4(3), 895–903.

    Article  Google Scholar 

  32. Sulonen, K., Suvikunnas, P., Vuokko, L., Kivinen, J., & Vainikainen, P. (2003). Comparison of MIMO antenna configurations in picocell and microcell environments. IEEE Journal on Selected Areas in Communications, 21(5), 703–712.

    Article  Google Scholar 

  33. Svantesson, T., & Wallace, J. (2003). On signal strength and multipath richness in multi-input multi-output systems. In IEEE international conference on communications (Vol. 4, pp. 2683–2687). Anchorage, AR.

  34. Tang, Z., & Mohan, A. S. (2005). Experimental investigation of indoor MIMO Ricean channel capacity. IEEE Antennas and Wireless Propagation Letters, 4, 55–58. http://ieeexplore.ieee.org/document/1424001/.

  35. Telatar, E. (1995). Capacity of multi-antenna Gaussian channels. Internal technical memorandum, AT&T Bell Laboratories.

  36. Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.

    Article  Google Scholar 

  37. Valenzuela, R. (1993). A ray tracing approach to predicting indoor wireless transmission. In 43rd IEEE vehicular technology conference (pp. 214–218). Secaucus, NJ.

  38. Walkenhorst, B. T. (2009). Achieving near-optimal MIMO capacity in a rank-deficient LOS environment. Ph.D. dissertation, Georgia Institute of Technology.

  39. Werner, D. H. (1996). An exact integration procedure for vector potentials of thin circular loop antennas. IEEE Transactions on Antennas and Propagation, 44(2), 157–165.

    Article  Google Scholar 

  40. Yordanov, H., Russer, P., Ivrlač, M. T., & Nossek, J. A. (2009). Arrays of isotropic radiators—A field-theoretic justification. In Proceedings on IEEE/ITG international workshop smart antennas. Berlin.

Download references

Acknowledgements

This work was funded by the Natural Science and Engineering Research Council of Canada (NSERC) and the University of New Brunswick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Rouse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouse, C.D., Petersen, B.R. & Colpitts, B.G. Characterising an In-Room MIMO System Employing Elevation-Directional Access Point Antennas. Wireless Pers Commun 96, 3889–3905 (2017). https://doi.org/10.1007/s11277-017-4356-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4356-3

Keywords

Navigation